Sac

A B > A B > A B >

Global modelling of air pollution using multiple data sources

Matthew Thomas – M.L.Thomas@bath.ac.uk

Supervised by Dr. Gavin Shaddick In collaboration with IHME and WHO

February 22, 2016

Motivation	Data Sources	Existing Approaches	Hierarchical Modelling	Current Research
MOTIVAT	ION			

- Air pollution is an important determinant of health and poses a significant threat globally.
- It is known to trigger cardiovascular and respiratory diseases in addition to some cancers.
- ▶ Particulate Matter (PM_{2.5}) is estimated to be
 - 4th highest health risk factor in East Asia
 - 6th in South Asia and
 - 7th in Africa and the Middle East
- There is convincing evidence for the need to model air pollution effectively.

Motivation	Data Sources	Existing Approaches	Hierarchical Modelling	Current Research
MOTIVAT	ION			

- WHO and other partners plan to strengthen air pollution monitoring globally.
- Aim is to produce accurate and convincing evidence of risks posed.
- Allow data integration from different sources.
- This will allow borrowing from each methods respective strengths.

- Currently, three methods are considered:
 - Ground Monitoring,
 - Satellite Remote Sensing and
 - Atmospheric Modelling

Motivation	Data Sources	Existing Approaches	Hierarchical Modelling	Current Research

GROUND MONITORING

Figure: World map with ground monitor locations, coloured by the estimated level of $PM_{2.5}$ in μgm^{-3} .

SATELLITE REMOTE SENSING

Figure: Global satellite remote sensing estimates of $PM_{2.5}$ in μgm^{-3} for 2014 used in GBD2015

5/34 <□▶<∄><≧><≧> ≅> ≥ ৩৭ে

Atmospheric Modelling

Figure: Global chemical transport model estimates of PM_{2.5} in μgm^{-3} for 2014 used in GBD2015

POPULATION ESTIMATES

Figure: Estimate of population density per $0.1^{\circ} \times 0.1^{\circ}$ grid location for 2014 used in GBD2015

Motivation	Data Sources	Existing Approaches	Hierarchical Modelling	Current Research
LINEAR	R MODELL	ING		

- The current GBD approach to modelling combines estimates from atmospheric models and satellites into a 'fused' estimate.
- Let x_i^{am} and x_i^{sat} be atmospheric model and satellite estimates for grid cell *i*, then the fused estimate is defined as:

$$x_i^{fus} = \frac{x_i^{sat} + x_i^{am}}{2}.$$

The ground monitors and grid data are calibrated, logged and fused data is used as an explanatory variable in a linear model to determine ground level PM_{2.5}:

$$\log\left(y_{i}^{gm}
ight)=eta_{0}+eta_{1}\log\left(x_{i}^{fus}
ight)+\epsilon_{i} \hspace{1em}i=1,\ldots,n.$$

8/34

07 JH シック・ヨー・ (日・ (日・ (日・ (日・

 Ground level PM_{2.5} is then estimated using tradition linear modelling techniques.

Figure: Predictions of PM_{2.5} in μgm^{-3} for 2014, from existing WHO/GBD model.

9/34 <□><⊕><≣><≣><≣> € ♡৭ে

PREDICTIONS, BY REGION

Figure: $PM_{2.5}$ measurements against satellite estimates on the log-scale, for 2014, split by region. The red and green lines denote the single 'global' and a region specific model respectively, estimated using all of the data.

10/34 ৩৭.০

э

イロト 不得 トイヨト イヨト

Motivation Data Sources Existing Approaches Hierarchical Modelling Current Research

HIERARCHICAL MODELLING

Observation Level: We assume the ground monitor data y^{gm}_{ijkl} comes from a measurement error model, on the log-scale:

$$\log\left(y_{ijkl}^{(gm)}\right) = z_{ijkl}^{(gm)} + \epsilon_{ijkl} \quad \epsilon_{ijkl} \sim N(0, \sigma_{\epsilon}^2)$$

Process Level: Let x^{sat}_{ijkl}, x^{am}_{ijkl} and x^{pop}_{ijkl} denote the satellite, atmospheric model and population estimates respectively. The underlying process is modelled as follows:

$$z_{ijkl} = \tilde{\beta}_{0jkl} + \tilde{\beta}_{1jkl} \log(x_{ijkl}^{sat}) + \tilde{\beta}_{3jkl} \log(x_{ijkl}^{pop}) + \beta_4 x_i^{elev} + \beta_5 x_i^{dust} + \beta_6 x_i^{sanoc}$$
$$\tilde{\beta}_{mjkl} = \beta_m^G + \beta_{mj}^{SR} + \beta_{mjk}^R + \beta_{mjkl}^C + \beta_m^P P_i + \beta_m^A A_i + \beta_m^U U_i, \quad (m = 0, 1, 2, 3)$$

 Prior Level: Vague priors were used, default in R-INLA to exploit conjugacy and therefore allow efficient computation.

Motivation	Data Sources	Existing Approaches	Hierarchical Modelling	Current Research

BAYESIAN HIERARCHICAL MODELLING

- Many spatial or spatio-temporal models that involve data inherently have a hierarchical structure.
- Hierarchical models extremely useful and flexible framework in which to model complex relationships and dependencies in data.
- Bayesian hierarchical models are commonly written:
 - 1. The observation level $y|z, \theta$ Data y, are assumed to arise from an underlying latent process z, which is unobservable but measurements with error can be taken.
 - 2. The underlying process level $z|\theta$ The latent process z assumed to drive the observable data and is the true underlying quantity of interest.
 - 3. The prior level θ This level describes known prior information about the model parameters θ
- Bayesian techniques to statistical modelling allow us to interpret levels in the model that weren't measured such as the underlying latent process.

APPROACH TO DATA INTEGRATION

- > Data integration in the current framework uses a fused estimate.
- Atmospheric model estimates are numerically simulated data from a specified PDE.
- Satellite estimates are modelled from images.
- Both estimation methods are very different; as they should provide different perspectives on the modelled system and have very different error structures.
- ► So, initially terms were fitted separately within the model.
- However, both data sources were highly collinear and numerical estimates were removed from the model.

13/34

. (ロ) 4 同) 4 ヨ) 4 ヨ) ヨー クへの

ADDITION OF EXTRA COVARIATES

- In many areas of the world air pollution estimates weren't very accurate.
- Example: Ulan Bator, Mongolia

- Other pollutant levels were not available
- Population was added into the model (on the log-scale)
- Other covariates were added into the model

(日)

Motivation	Data Sources	Existing Approaches	Hierarchical Modelling	Current Research
RANDOM	EFFECTS			

- Linear models used by WHO, assume a single global relationship.
- This is a massive assumption, that is unlikely to hold.
- Each country is assigned to a 'Region' and 'Super Region' (Nested Hierarchy).

· ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・

DEFINED REGIONS

Figure: World map coloured by GBD defined Regions

Motivation

Hierarchical Modelling

DEFINED SUPER REGIONS

Figure: World map coloured by GBD defined Super Regions

									17/34
Þ	< 🗗	►	æ	Þ.	•	æ	►	- E	Sac

Motivation	Data Sources	Existing Approaches	Hierarchical Modelling	Current Research
RANDOM	EFFECTS			

- Linear models used by WHO, assume a single global relationship.
- This is a massive assumption, that is unlikely to hold.
- Each country is assigned to a 'Region' and 'Super Region' (Nested Hierarchy).
- Could like earlier fit models by Super Region, Region or Country to look at more local relationships. However this comes with issues.
- Instead we added IID random effects for Super Region, Region and Country on Satellite and Population
- This allows borrowing from hierarchy when there is limited data.
- It proved useful for further borrowing at lower levels in the hierarchy by using a Conditional Autoregressive model (CAR) on the population coefficient.

Motivation	Data Sources	Existing Approaches	Hierarchical Modelling	Current Research
Сомри	JTATION			

- Bayesian models of this complexity do not have analytical solutions.
- ▶ 'Big' data means traditional MCMC techniques are impractical.
- Recent advances in approximate Bayesian inference provide fast and efficient methods for modelling, such as Integrated Nested Laplace Approximations (INLA).
- INLA performs numerical calculations of posterior densities using Laplace Approximations hierarchical latent Gaussian models:

$$p(\theta_k|\boldsymbol{y}) = \int p(\boldsymbol{\theta}|\boldsymbol{y}) d\boldsymbol{\theta}_{-k} \quad p(z_j|\boldsymbol{y}) = \int p(z_j|\boldsymbol{\theta}, \boldsymbol{y}) p(\boldsymbol{\theta}|\boldsymbol{y}) d\boldsymbol{\theta}$$

• A latent Gaussian process allows for sparse matrices, and therefore efficient computation.

Motivation	Data Sources	Existing Approaches	Hierarchical Modelling	Current Research
COMPUT				

COMPUTATION

- Already suite of programs to implement these (R-INLA).
- However, while INLA is computationally more attractive, R-INLA still requires huge computation and memory usage.
- Unable to run this model on standard computers (4-8GB RAM).

20/34

- Required the use of a High-Performance Computing (HPC) service.
 - Balena cluster at University of Bath.
 - 2 × 512GB RAM nodes (32×32 GB RAM cores).
- Unable to use INLA as parallelised code.
- Restricted to 1 × 32GB RAM node.
- Took an iterative approach to prediction.

PREDICTIONS

Figure: Predictions of $PM_{2.5}$ in μgm^{-3} , from hierarchical model for 2014.

21/34

SAC

PREDICTIONS: REGIONAL

Figure: Predictions of PM_{2.5} in μgm^{-3} , from hierarchical model for 2014 in Europe

22/34 ୬**୯**୯

æ

PREDICTIONS: LOCAL

Figure: Predictions of PM_{2.5} in μgm^{-3} , from hierarchical model for 2014 in India

23/34 ৩৭. ি

æ

PREDICTIONS: LOCAL

Figure: Predictions of PM_{2.5} in μgm^{-3} , from hierarchical model for 2014 in Mexico

24/34 ৩৭.ি

æ

Figure: Uncertainty of PM2.5 predictions for 2010, for hierarchical model; half length of estimated 95% credible intervals

25/34

SAC

EXCEEDANCE PROBABILITIES

Figure: Probability that level of PM_{2.5} in each cell exceeds $25\mu gm^{-3}$ in 2010, for hierarchical model

26/34

500

Motivation	Data Sources	Existing Approaches	Hierarchical Modelling	Current Research
BAYESI	an Meldi	ING		

- Bayesian melding makes use of a Bayesian hierarchical model.
- Assumes a latent process z(s) that represents the true level PM_{2.5}.
- Data Level: Ground monitor data is assumed to be a measurement error model i.e.

$$y^{gm}(s) = z(s) + \epsilon(s)$$
 $\epsilon(s) \sim N(0, \sigma_{\epsilon}^2)$

 The grid data is then modelled at point locations as a function of the true underlying process

$$y^{grid}(\mathbf{s}) = f(z(\mathbf{s})) + \delta(\mathbf{s}) \quad \delta(\mathbf{s}) \sim N(0, \sigma_{\delta}^2).$$

As we cannot model grid data with a point process, we integrate and get a stochastic integral:

$$y^{grid}(B_j) = \int_{B_j} f(z(s)) + \delta(s) ds, j = 1, 2, \dots, m$$

► Latent Process Level: In the second stage of the model, the true underlying process *z*(*s*) is assumed to follow the model

$$z(\boldsymbol{s}) = \mu(\boldsymbol{s}) + m(\boldsymbol{s})$$

where $\mu(s)$ is a spatial trend and the m(s) is a spatial process for location *s*.

- Prior Level: It will also be necessary to specify relevant priors for model parameters.
- ▶ **Inference:** It will be quantify the true levels of PM_{2.5}

$$p(z(\mathbf{x})|\mathbf{y}^{gm}, \mathbf{y}^{grid}) = \int p(z|\mathbf{y}^{gm}, \mathbf{y}^{grid}, \mathbf{\theta}) p(\mathbf{\theta}|z(\mathbf{x})) d\mathbf{\theta}$$

28/34 ৩৫৫

BAYESIAN MELDING

29/34

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ(?)

Motivation	Data Sources	Existing Approaches	Hierarchical Modelling	Current Research
BAYESIA	an Meld	ING		

Advantages:

- Makes use of a flexible and coherent framework
- ► Allows user to assume one underlying process driving the
- Treats estimation methods as different quantities but are intrinsically linked

Disadvantages:

- Very computationally demanding (particularly with MCMC)
- ► Only implemented in small-scale problems (~20 Monitors)

Aims:

- To implement this framework on large-scale problems!
- Look at approximate Bayesian inference (INLA) for more efficient computation

30/34

Allow for time effects.

LIVE A LITTLE LESS LIKE THIS....

Motivation

Data Sources

Existing Approaches

Hierarchical Modelling

Current Research

... AND MORE LIKE THIS...

ANY QUESTIONS?

33/34 <□▶<∄><ছ><ছ> ছ ৩৫৫

Motivation	Data Sources	Existing Approaches	Hierarchical Modelling	Current Research

Thank you for listening!