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Bayesian Inference
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BAYES’ THEOREM

This is Bayes’ theorem:

p(y|x) =
p(x|y)p(y)

p(x)

I For some it is just a theorem,
I For others, it is a way of life!
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BAYESIAN INFERENCE

It allows us to specify a model for some data y in terms of some
parameters θ in a ‘Likelihood’ function:

p(y|θ)

and any a-priori knowledge about the model parameters in a Prior
probability distribution

p(θ)

Given these two components we can infer information about the
model using Bayes theorem

p(θ|y) =
p(y|θ)p(θ)

p(y)

and obtain the posterior, which tells us about the uncertainty around
the parameter vector θ after observing the data y
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BAYESIAN INFERENCE

The denominator p(y) is the marginal distribution of the observation
y which is unknown and consider this a normalisation constant so we
often take proportionality wrt θ

Posterior ∝ Likelihood× Prior
p(θ|y) ∝ p(y|θ)× p(θ)

To obtain a proper posterior distribution we must find p(y) the which
is of the form

p(y) =

∫
p(y|θ)p(θ) dθ

This integral is often analytically intractable and thus we must use
other techniques to be able to find the posterior
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LAPLACE APPROXIMATION

Laplace approximation is an technique to obtain inference by
approximating a posterior distribution by a Gaussian distribution.

To make a Laplace approximation we take a Taylor expansion of the
density log p(θ|y) around its mode θ̂, i.e.

log p(θ|y) = log p(θ̂|y) + (θ − θ̂)T ∂

∂θ
log p(θ|y)

∣∣∣∣
θ=θ̂

+
1
2

(θ − θ̂)T ∂

∂θ∂θT log p(θ|y)

∣∣∣∣
θ=θ̂

(θ − θ̂) + h.o.t.

Then noting as the mode is the maximum of p(θ|y) then the second
term vanishes, i.e.

∂

∂θ
log p(θ|y)

∣∣∣∣
θ=θ̂

= 0
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LAPLACE APPROXIMATION

Letting

H(θ̂|y) = − ∂

∂θ∂θT log p(θ|y)

∣∣∣∣
θ=θ̂

and throw away higher order terms then we see that

p(θ|y) ∝ exp
(
−1

2
(θ − θ̂)TH(θ̂|y)(θ − θ̂)

)
which is the kernel of a Gaussian distribution and therefore,

θ|y ∼ N(θ̂,H(θ̂|y)−1)

I In general, you will need to numerically find the mode (often
using Newton optimisation)

I Approximation is accurate if the posterior is approximately
Gaussian.
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MARKOV CHAIN MONTE CARLO

Markov Chain Monte Carlo (MCMC) methods are based on
sampling, and are extensively used in Bayesian inference. We aim to
sample from the posterior

p(θ|y) ∝ p(y|θ)× p(θ)

to estimate such as mean and variance.

Some advantages and disadvantages:
I Very flexible with well-known algorithms
I Software available (JAGS, WinBUGS, etc.)
I Not the most efficient (particularly in large-scale problems)
I Issues regarding implementation and convergence of the chain

In many cases, its far easier and efficient to use approximations for
Bayesian inference.
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INTEGRATED NESTED LAPLACE APPROXIMATIONS

Integrated Nested Laplace Approximations (INLA) is a recent
development in approximate Bayesian Inference.

It was introduced by Rue, Martino and Chopin (2009) as an
alternative to methods such as MCMC for a general set of statistical
models called latent Gaussian models.

Posterior distributions are approximated using a series of Laplace
approximations meaning we do not need to sample from the
posterior.

It has been shown to be accurate in all but extreme cases and reduced
computational burden compared to MCMC.

Software suite called R-INLA suite allows implementation in R
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Hierarchical Models
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LATENT GAUSSIAN MODELS

Suppose we have observation vector y that arises from some
distribution. We are often interested in estimating the mean µ which
is related to the linear predictor,

ηi = g(µi) = β0 +

p∑
j=1

βjxji +

q∑
k=1

fk(uki) + εi, i = 1, . . . ,n

where
I β0 is an intercept term
I βj is the linear effect of covariates xji

I εi is the iid noise term (i.e. εi ∼ N(0, σ2
ε))

I fk(·) is non-linear function of covariate uji. We often represent
this function as fk(s) =

∑
m γkmψkm(s) where ψkm(·) are the basis

functions and γkm are the weights.
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LATENT GAUSSIAN MODELS

By letting,

η = (η1, . . . , ηn)T z = (β0, . . . , βp, {γkm})T

we can write this as a linear system

η = Az

A model is then classed as a latent Gaussian model if we assign a
Gaussian distribution to the vector z i.e.

z ∼ N(µ,Σ)

where µ is the mean vector and Σ is a positive-definite covariance
matrix.

We then define hyperparameters θ to account for scale of
dependency and variability.



13/ 50

Bayesian Inference Hierarchical Models GMRFs Integrated Nested Laplace Approximation Future Work and Conclusion

This offers a very flexible framework so that we can work with a big
range of models.

We’re moving from a standard Bayesian model:

Hyperparameters: θ Data: y

to a hierarchical one:

Hyperparameters: θ Data: y

Latent process: z
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BAYESIAN HIERARCHICAL MODELS

This formulation in general is called a Bayesian Hierarchical model,
which is the inherent structure of many models.

This is a flexible model that has wide application in statistical
modelling.

Bayesian hierarchical models are commonly written in the form:

y|z,θ ∼ p(y|z,θ)

z|θ ∼ p(z|θ)

θ ∼ p(θ)
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BAYESIAN HIERARCHICAL MODELS

I The observation level y|z,θ - Data y, are assumed to arise from
the underlying latent (Gaussian) process z, which is
unobservable, although may be measured with error. For
example consider,

y|z,θ ∼ N(Az, σ2
ε I)

I The underlying process level z|θ - The latent process z assumed
to drive the observable data and Represents the true value of the
quantity of interest. For example consider,

z|θ ∼ N(µ, σ2
z Σ)
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BAYESIAN HIERARCHICAL MODELS

I The prior level θ - This level describes known prior information
about the model parameters θ and controls the scale and
variability of the data and the latent process. For example
consider,

θ = (σε, σz)
T ∼ p(θ)

Inference on all model parameters in a hierarchical model such as
these can be done as follows.
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INFERENCE

We can write the posterior of the model parameters in a similar way
as before

p(θ, z|y) ∝ p(y|z,θ)p(z,θ) = p(y|z,θ)p(z|θ)p(θ)

We are interested in the marginal effects of all the latent process
parameters and the hyperparameters

p(θi|y) =

∫∫
p(θ, z|y) dz dθ−i, p(zi|y) =

∫∫
p(θ, z|y) dz−i dθ

Typically dim(z) = 102 − 106 and dim(θ) ≤ 10 so these are,
high-dimensional integrals, so we simplify
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INFERENCE

Using the fact that p(θ, z|y) = p(z|θ,y)p(θ|y) then we see that

p(θi|y) =

∫∫
p(θ, z|y) dz dθ−i =

∫
p(θ|y) dθ−i

p(zi|y) =

∫∫
p(θ, z|y) dz−i dθ =

∫
p(zi|θ,y)p(θ|y)dθ

So instead of having to find p(z,θ|y) and do very high dimensional
integrals we are just required to find the distributions p(θ|y) and
p(zi|θ,y) and able to do lower dimensional numerical integration.
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GMRFs
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GAUSSIAN RANDOM FIELDS

A random vector z = (z1, . . . , zn)T is called a Gaussian Markov Field
with respect to the graph G = (V, E) in a domain D ⊂ Rd with mean µ
and positive definite covariance matrix Σ, if and only if its density
has the form

p(z) =
1

(2π)n/2|Σ|1/2 exp
(
−1

2
(z− µ)TΣ−1(z− µ)

)
There are some issues with working with this parameterisation in
practice, especially when n is large.

I Covariance matrix has O(n2) elements.
I Computation often rises O(n3) (determinants, inverse, etc.)
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GAUSSIAN RANDOM FIELDS

In some cases it may be better to parameterise the distribution by the
precision matrix Q = Σ−1 (inverse of the covariance),

p(z) =
|Q|1/2

(2π)n/2 exp
(
−1

2
(z− µ)TQ(z− µ)

)
By using this parameterisation we have reduced some of the
expected computation.

In particular, the non-zero pattern in the precision matrix tells us a lot
about the conditional distributional structure.

The Markov property states that if Qij = 0 if and only if zi and zj are
conditionally independent given all other elements z−ij
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GAUSSIAN MARKOV RANDOM FIELD

A random vector z = (z1, . . . , zn)T is called a Gaussian Markov
Random Field (GMRF) with respect to the graph G = (V, E) in a
domain D ⊂ Rd with mean µ and positive definite precision matrix
Q, if and only if

p(z) =
|Q|1/2

(2π)n/2 exp
(
−1

2
(z− µ)TQ(z− µ)

)
Qij = 0 ⇐⇒ (i, j) /∈ E

To reduce computation, we assume that the latent variables follow a
GMRF.

The conditional independence allows for computing with sparse
matrices. This helps until n gets really large, but we’ll return to this
later.
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EXAMPLE: AR(1) PROCESS

Suppose we have a Autoregressive process of order 1,

z0 ∼ N(0, (1− α)−1σ2)

{zt|zs, s < t} ∼ N(αzt−1, σ
2); t = 1, . . . ,T

where α ∈ (0, 1) and σ > 0.

Σij =
α|i−j|

1− α
σ2, Q =

1
σ2


1 −α
−α 1 + α2 −α

. . . . . . . . .
−α 1 + α2 −α

−α 1


so Σ is dense and Q is sparse.
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Integrated Nested Laplace Approximation
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INTEGRATED NESTED LAPLACE APPROXIMATION

As mentioned earlier, we have to find

p(θ|y) and p(zi|θ,y)

to be able to find the marginal posterior distributions

p(θi|y) =

∫
p(θ|y) dθ−i, p(zi|y) =

∫
p(zi|θ,y)p(θ|y)dθ

This is done in three steps.
1. Find an approximation to the distribution p(θ|y)

2. Find an approximation to the marginal distributions p(zi|θ,y)

3. Numerically integrate to get marginal distributions



26/ 50

Bayesian Inference Hierarchical Models GMRFs Integrated Nested Laplace Approximation Future Work and Conclusion

UNIVARIATE EXAMPLE

To demonstrate best how INLA works in practice, we will work with
the following hierarchical model.

Suppose that observations y = (y1, . . . , yn)T are assumed to be
independent and identically distributed with

yi|z, θ ∼ N(z, θ−1)

Next, suppose we place a Gaussian prior distribution on the latent
variable z

z|θ ∼ N(µ0, τ
−1
0 )

with µ0 ∈ R and τ0 > 0 known. The hyperparameter θ is given a
Gamma prior

θ ∼ Gamma(α, β)

with α, β > 0 known.
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INLA: STEP 1

The first task is to find the joint posterior of the hyperparameters θ
given the observations y. By applying Bayes theorem and taking
proportionality with respect to θ

p(θ|y) ∝ p(y|z,θ)p(z|θ)p(θ)

p(z|θ,y)

≈ p(y|z,θ)p(z|θ)p(θ)

pG(z|θ,y)

∣∣∣∣
z=ẑ(θ)

= p̂(θ|y)

where ẑ(θ) is the mode of p(z|θ,y) for a given θ.
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INLA: STEP 1

To find the Gaussian approximation p(z|θ,y), we apply Bayes
theorem and taking proportionality with respect to z

p(z|θ,y) ∝ p(y|z,θ)p(z|θ)

≈ pG(y|z,θ)p(z|θ)

As the approximation (right hand side) is proportional to the product
of two Gaussians, we know that the posterior will be Gaussian

pG(z|θ,y) ∼ N(µz|θ,y,Qz|θ,y)

This approximation turns out to be accurate in the vast majority of
cases due to the underlying process being Gaussian.



29/ 50

Bayesian Inference Hierarchical Models GMRFs Integrated Nested Laplace Approximation Future Work and Conclusion

INLA: STEP 1

We now aim to explore p̂(θ|y) to find ‘good’ integration points {θ(j)}
for the numerical integration later.

1. Find the mode of p̂(θ|y) (using a Newton optimisation)

2. Compute the Hessian at the mode to be able to define new
variables for search direction.

3. Perform the grid search
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UNIVARIATE EXAMPLE

Firstly, we derive an expression for the posterior of the latent
parameter z given θ and y,

p(z|θ,y) ∝ p(y|z, θ)p(z|θ) =

n∏
i=1

p(yi|z, θ)p(z|θ)

=

√
τ0θ

2π
exp

(
−θ

2

n∑
i=1

(yi − z)2

)
exp

(
−τ0

2
(z− µ0)2

)
∝ exp

(
− (nθ + τ0)

2

(
z2 − 2

θ
∑

i yi + µ0τ0

nθ + τ0
z
))

which we recognise as the kernel of the Gaussian

z|θ,y ∼ N
(
θ
∑

i yi + µ0τ0

nθ + τ0
,

1
nθ + τ0

)
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UNIVARIATE EXAMPLE

We now approximate the posterior p(θ|y),

p̂(θ|y) ≈ p(y|z, θ)p(z|θ)p(θ)

p(z|θ,y)

∣∣∣∣
z=ẑ(θ)

=

√
2π

nθ + τ0

(
n∏

i=1

p(yi|z, θ)

)
p(z|θ)p(θ)

Because of conjugacy this has exact form

θ|y ∼ Gamma

(
α+

n
2
, β +

1
2

n∑
i=1

(yi − ẑ)2

)

However, for demonstration, we will explore this distribution and set
up an ‘approximation’ for numerical integration later.
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UNIVARIATE EXAMPLE
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Figure: Approximate posterior distribution p(θ|y) with black dots denoting the set of values {θ}
for µ0 = 0, τ0 = 0.25, α = 1.6 and β = 0.4
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INLA: STEP 2

The next task is to find an approximation to the marginal
distributions p(zi|θ,y). Again, we apply Bayes theorem and taking
proportionality with respect to zi

p(zi|θ,y) ∝ p(y|z,θ)p(z|θ)

p(z−i|zi,θ,y)

≈ p(y|z,θ)p(z|θ)

pG(z−i|zi,θ,y)

∣∣∣∣
z−i=z−i(zi,θ)

= p̃(zi|θ,y)

where z−i(zi,θ) is the mode of p(z−i|zi,θ,y) for a given zi and θ.
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INLA: STEP 2

Similarly to before,

p(z−i|zi,θ,y) ∝ p(y|z,θ)p(z|θ)

which will give us a slightly different configuration than if we were
to find it from pG(z|θ,y)

The distribution is then normalised using numerical quadrature

ˆ̂p(zi|θ,y) = cp̂(zi|θ,y)

where
c =

∫
p̂(zi|θ,y) dzi
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INLA: STEP 3

Once we have obtained the approximations

p̂(θ|y) and ˆ̂p(zi|θ,y)

for p(θ|y) and p(zi|θ,y) respectively, the marginal posterior
distributions can be approximated.

To find the marginal distribution of p̂(θ|y), we use the grid {θ(j)}
explored earlier. We use these points to construct an interpolant to
log p̂(θ|y) and compute marginal distributions using numerical
integration of this object.
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INLA: STEP 3

To find the marginal distribution of ˆ̂p(zi|y), we use the grid {θ(j)} to
numerically integrate as follows

ˆ̂p(zi|y) ≈
∑

j

ˆ̂p(zi, |θ(j),y)p̂(θ(j)|y)∆j

where ∆j are the integration weights.

Accuracy of the marginals depends on the density of the
configuration {θ(j)}.
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UNIVARIATE EXAMPLE
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Figure: Approximation of the full conditional distribution z|θ(j), y for each value of θ in the set
{θ(j)}
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UNIVARIATE EXAMPLE
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Figure: The dashed curve denotes the approximated posterior distribution of z|y computed as the
finite sum of the weighted approximated joint posterior distributions - given by
pG(zi, |θ(j), y)p̂(θ(j))∆j which are depicted as solid lines
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IMPORTANT OBSERVATION

If we observe
p(y|z,θ) ∼ N(Az, σ2

ε I)

then the approximation is exact and the problem reduces to a
numerical linear algebra problem.

There are some caveats on this claim on the choice of hyperprior. If its
Gaussian, or conjugate and proper then this is the case. If not, then
some approximations will need to be made.
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Future Work and Conclusion
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WHAT NOW?

So we have a way of performing Bayesian inference on a wide range
of latent Gaussian models, and a suite of programs that will
implement it. Does this mean we can all go home?

NO!
There are many numerical methods used in INLA that make it quite
efficient. However, there are many things that need to be done to
enable INLA to work efficiently on big data.

In particular, there is one problem that we cannot avoid...
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WHAT NOW?

We need to calculate
determinants of very large

matrices!
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WHY WE NEED THE DETERMINANT

As discussed earlier, GMRFs are pivotal to the INLA approach to
obtain efficiency.

The density function of the GMRF z ∼ N(µ,Q−1) is

p(z) =
|Q|1/2

(2π)n/2 exp
(
−1

2
(z− µ)TQ(z− µ)

)
The precision matrix Q is sparse so will have O(n) non-zero entries.
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WHY WE NEED THE DETERMINANT

But what happens when I need to place a Gaussian process on 1.4
million points?

Figure: Satellite remote sensing estimates of PM2.5 in µgm−3 for 2014 on a 10km×10km grid used
in GBD2015
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WHY WE NEED THE DETERMINANT

There are a few large computations done with the precision matrix to
enable inference,

I Solving linear systems (Can be done very efficiently)
I Evaluating the density at a given point (Requires the

determinant of Q which is more difficult)
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WHY WE NEED THE DETERMINANT

At the moment to enable these computations a Cholesky factorisation
is used

Q = LLT

Thankfully, the Markov property lends itself to allow for sparse
Cholesky factor L.

This decomposition enables both a solve of a linear system

Qx = LLTx = z =⇒ x = L−TL−1z

using back-substitution twice and calculation of the log-determinant

log |Q| = 2
n∑

i=1

log(Lii)

Can we do better than the Cholesky factorisation?
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CONCLUSION

In general, INLA is a technique that
I allows inference from a large class of models in a wide range of

applications.
I is more computationally attractive than say, MCMC.

However, the emergence of big data has meant that some models are
computationally infeasible in the current implementation, so in the
future, we have to be smarter about the numerics we use.

This is where I come in...!
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Thank you for listening.
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ANY QUESTIONS?
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