

Global modelling of air pollution using multiple data sources

Matthew Thomas – M.L.Thomas@bath.ac.uk

Supervised by Dr. Gavin Shaddick In collaboration with IHME and WHO

July 17, 2018

1/25

Sac

MOTIVATION

- Air pollution is an important determinant of health and poses a significant threat globally.
- It is known to trigger cardiovascular and respiratory diseases in addition to some cancers.
- Particulate Matter (PM_{2.5}) is estimated to be
 - 4th highest health risk factor in the world
 - attributable to 5.5 million premature deaths
- There is convincing evidence for the need to model air pollution effectively.

2/25

REQUIREMENTS

- WHO and other partners plan to strengthen air pollution monitoring globally.
- This will produce accurate and convincing evidence of risks posed.

3/25

GROUND MONITORING

Figure: World map with ground monitor locations, coloured by the estimated level of $PM_{2.5}$ in μgm^{-3} .

4/25 <□▶<∄><≥><≥> ≥ ∽<<

REQUIREMENTS

- WHO and other partners plan to strengthen air pollution monitoring globally.
- This will produce accurate and convincing evidence of risks posed.
- Allow data integration from different sources.
- This will allow borrowing from each methods respective strengths.

5/25

. ・ロト・日本・モー・モー・モー・ショー シックの

- Currently, three methods are considered:
 - Ground Monitoring,
 - Satellite Remote Sensing and
 - Atmospheric Modelling

SATELLITE REMOTE SENSING

Figure: Global satellite remote sensing estimates of $PM_{2.5}$ in μgm^{-3} for 2014 used in GBD2015

6/25 <□▶<∄><≥><≥> ≥ ∽<<

ATMOSPHERIC MODELLING

Figure: Global chemical transport model estimates of $PM_{2.5}$ in μgm^{-3} for 2014 used in GBD2015

POPULATION ESTIMATES

Figure: Estimate of population density per $0.1^{\circ} \times 0.1^{\circ}$ grid location for 2014 used in GBD2015

8/25 <□▶<∄><≧><≧> < ©><©

PREVIOUS APPROACH

- The current GBD approach to modelling combines estimates from atmospheric models and satellites into a 'fused' estimate.
- Let x_i^{am} and x_i^{sat} be atmospheric model and satellite estimates for grid cell *i*, then the fused estimate is defined as:

$$x_i^{fus} = \frac{x_i^{sat} + x_i^{am}}{2}.$$

The ground monitors and grid data are calibrated, logged and fused data is used as an explanatory variable in a linear model to determine ground level PM_{2.5}:

$$\log\left(y_{i}^{gm}
ight)=eta_{0}+eta_{1}\log\left(x_{i}^{fus}
ight)+\epsilon_{i} \hspace{1em}i=1,\ldots,n.$$

9/25

 Ground level PM_{2.5} is then estimated using tradition linear modelling techniques.

A MULTILEVEL RANDOM EFFECT MODEL

- Suppose that a ground monitor at location *s* is situated in grid cell B_i.
- ► To avoid non-negativity and skew we consider the estimates of PM_{2.5} on the log-scale
- We then assume that the log estimates of PM_{2.5} from ground monitors, y_s are normally distributed

$$y_s = z_{B_i} + \sum_{j=1}^n \gamma_j x_{s,j} + \epsilon_s$$

where

► *x*_{*s*,*j*} are covariate information for ground monitor at location *s*,

10/25

···· 《曰》《曰》《臣》《臣》 臣 · · · · · · ·

- $\blacktriangleright z_{B_i}$ is a mean trend for grid cell B_i
- $\epsilon_s \sim N(0, \sigma_{\epsilon}^2)$ is measurement error.

A MULTILEVEL RANDOM EFFECT MODEL

The mean trend z_{B_i} for grid cell B_i is modelled using the following,

$$z_{B_i} = \tilde{\beta}_0 + \sum_{j=1}^k \tilde{\beta}_j u_{B_i,j} + \sum_{j=k+1}^m \beta_j u_{B_i,j} + e_{B_i}$$

11/25

・・・・
 ・・・
 ・・・
 ・・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 <l

where

- $u_{B_i,j}$ are covariate information for grid cell B_i ,
- $e_s \sim N(0, \sigma_e^2)$ is the within cell variability.

A MULTILEVEL RANDOM EFFECT MODEL

To allow for more local variation we allow a series random effects

$$\tilde{\beta}_j = \beta_{j0} + \sum_{k=1}^K \beta_{jk}$$

12/25

- We propose these random effects to have a nested hierarchy to allow borrowing between levels.
- Here we aggregate countries into regions and regions into superregions
 - Using country level mortality levels and causes of death

DEFINED REGIONS

Figure: World map coloured by GBD defined Regions

									13/25
< 🗗	►	•	÷.	►	•	æ	×.	3	990

DEFINED SUPER REGIONS

Figure: World map coloured by GBD defined Super Regions

14/25

900

э

ヘロト 人間 とく ヨン く ヨン

COMPUTATION

- Bayesian models of this complexity do not have analytical solutions.
- ▶ 'Big' data means traditional MCMC techniques are impractical.
- Recent advances in approximate Bayesian inference provide fast and efficient methods for modelling, such as Integrated Nested Laplace Approximations (INLA).
- INLA performs numerical calculations of posterior densities using Laplace Approximations hierarchical latent Gaussian models:

$$p(\theta_k|\boldsymbol{y}) = \int p(\boldsymbol{\theta}|\boldsymbol{y}) d\boldsymbol{\theta}_{-k} \quad p(z_j|\boldsymbol{y}) = \int p(z_j|\boldsymbol{\theta}, \boldsymbol{y}) p(\boldsymbol{\theta}|\boldsymbol{y}) d\boldsymbol{\theta}$$

15/25

10,20 小川 (11,1) (11,1)

 A latent Gaussian process allows for sparse matrices, and therefore efficient computation.

COMPUTATION

- Already suite of programs to implement these (R-INLA).
- However, while INLA is computationally more attractive, R-INLA still requires huge computation and memory usage.
- ▶ Unable to run this model on standard computers (4-8GB RAM).

16/25

- Required the use of a High-Performance Computing (HPC) service.
 - Balena cluster at University of Bath.
 - 2×512 GB RAM nodes (32×32 GB RAM cores).
- Took an iterative approach to prediction.

PREDICTIONS

Figure: Predictions of PM_{2.5} in μgm^{-3} , from hierarchical model for 2014.

17/25

SAC

æ

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶

PREDICTIONS: REGIONAL

Figure: Predictions of PM_{2.5} in μgm^{-3} , from hierarchical model for 2014 in Europe

PREDICTIONS: LOCAL

Figure: Predictions of PM_{2.5} in μgm^{-3} , from hierarchical model for 2014 in Mexico

æ

ヘロト 人間 とく ヨン く ヨン

EVALUATION: CROSSVALIDATION

Figure: Comparison of RMSE between approaches. Dots denote the median of the distribution from 25 training/evaluation sets and the vertical lines the range of values. Super-regions are 1: High income, 2: Central Europe, Eastern Europe and Central Asia, 3: Latin America and Caribbean, 4: Southeast Asia, East Asia and Oceania, 5: North Africa / Middle East, 6: Sub-Saharan Africa and 7: South Asia.

BAYESIAN MELDING

- Bayesian melding assumes there is one latent process z_s that drives all sources of data.
- Data Level: Ground monitor data is assumed to be a measurement error model i.e.

$$y_s^{gm} = z_s + \epsilon_s \qquad \epsilon_s \sim N(0, \sigma_\epsilon^2)$$

The grid data is then modelled at point locations as a function of the true underlying process

$$y_s^{grid} = f(z_s) + \delta_s \quad \delta_s \sim N(0, \sigma_\delta^2).$$

As we cannot model grid data with a point process, we integrate and get the following integral:

$$y_{B_j}^{grid} = \int_{B_j} f(z_s) + \delta_s ds, j = 1, 2, \dots, m$$

BAYESIAN MELDING

Latent Process Level: In the second stage of the model, the true underlying process z_s is assumed to follow the model

$$z_s = \mu_s + m_s$$

where μ_s is a spatial trend and the m_s is a spatial process for location *s*.

▶ Inference: It will be quantify the true levels of PM_{2.5}

$$p(z_s|\boldsymbol{y}^{gm}, \boldsymbol{y}^{grid}) = \int p(z_s|\boldsymbol{y}^{gm}, \boldsymbol{y}^{grid}, \boldsymbol{\theta}) p(\boldsymbol{\theta}|z_s) d\boldsymbol{\theta}$$

22/25

(日)、(部)、(国)、(国)、(国)

BAYESIAN MELDING

- Makes use of a flexible and coherent framework
- Allows user to assume one underlying process driving the
- Treats estimation methods as different quantities but are intrinsically linked
- To implement this framework on large-scale problems!
- Look at approximate Bayesian inference (INLA) for more efficient computation

23/25

Allow for time effects.

Thank you for listening!

24/25

・< 母・< ミ・< ミ・< ミ・< マ・

ANY QUESTIONS?

25/25 ∢□▶∢∄▶∢≣⊁∢≣⋗ ≣ ৩৭৫