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INTRODUCTION

◮ Air pollution has been identified as a global health priority.

◮ In 2016, the World Health Organisation (WHO) estimated that
over 3 million deaths can be attributed to ambient air pollution.

◮ The Global Burden of Disease (GBD) project estimate that in 2015
ambient air pollution was in the top ten leading risks to global
health.

◮ Burden of disease calculations require accurate estimates of
population exposure for each country.
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ESTIMATING PM2.5
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ESTIMATING PM2.5

◮ Can utilise information from other
sources
◮ satellite remote sensing
◮ atmospheric models
◮ population estimates
◮ land use
◮ local network characteristics.

◮ Result of modelling and will be
subject to uncertainties and biases.
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DATA INTEGRATION MODEL FOR AIR QUALITY

◮ Developed to the Data Integration Model for Air Quality
(DIMAQ).

◮ DIMAQ calibrates ground measurements to estimates from
◮ satellite remote sensing,
◮ specific components of chemical transport models
◮ land use
◮ population.

◮ The coefficients in the calibration model are estimated by
country.

◮ Model allows borrowing from higher aggregations and if
information is not available on a country level.

◮ Exploits a geographical nested hierarchy.
◮ Achieved using hierarchical random effects.
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REGIONS
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Figure: Map of regions.



8/ 22

Introduction DIMAQ Results Conclusions

SUPER-REGIONS
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Figure: Map of super-regions.
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DATA INTEGRATION MODEL FOR AIR QUALITY

◮ Ground measurements at point locations, s, within grid cell, l,
country, i, region, j, and super–region, k are denoted by Yslijk.

◮ The model consists of a set of fixed and random effects, for both
intercepts and covariates, and is given as follows,

log(Yslijk) = β̃0,lijk +


p∈P

βpXp,slijk

+


q∈Q

β̃q,lijkXslijk

+ slijk .
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HIERARCHICAL RANDOM EFFECTS

◮ The random effect terms have contributions from the country,
the region and the super–region.

β̃q,ijk = βq + βC
q,ijk + βR

q,jk + βSR
q,k

◮ The intercept also having a random effect for the cell
representing within-cell variation in ground measurements.

β̃0,lijk = β0 + βG
0,lijk + βC

0,ijk + βR
0,jk + βSR

0,k
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RANDOM EFFECTS STRUCTURE
◮ The coefficients for super-regions are distributed with mean

equal to the overall mean (β0, the fixed effect) and variance
representing the between super–region variation,

βSR
k ∼ N(β,σ2

SR)

◮ The coefficients for regions are distributed with mean equal to
the coefficient for the super–region with variance representing
the between region variation,

βR
jk ∼ N(βSR

k ,σ2
R,k)

◮ The coefficients for a country is distributed with mean equal to
the coefficient for the region with variance representing the
between country variation,

βC
ijk ∼ N(βR

jk,σ
2
C,jk)
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INFERENCE

◮ Approximate Bayesian inference, such as Integrated Nested
Laplace Approximations (INLA), provide fast and efficient
methods for modelling with latent Gaussian models.

◮ INLA performs numerical calculations of posterior densities
using Laplace Approximations hierarchical latent Gaussian
models:

p(θk|y) =


p(θ|y)dθ−k p(zj|y) =


p(zj|θ, y)p(θ|y)dθ

◮ Latent Gaussian models allows for sparse matrices, and therefore
efficient computation.
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COMPUTATION

◮ R-INLA was used to implement DIMAQ.

◮ Unable to run this model on standard computers (4-8GB RAM).
◮ Required the use of a High-Performance Computing (HPC)

service.
◮ Balena cluster at University of Bath.
◮ 2 × 512GB RAM nodes (32 × 32GB RAM cores).

◮ Took an iterative approach to prediction.
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EVALUATION: CROSSVALIDATION
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Figure: Summaries of predictive ability of the GBD2013 model and DIMAQ, for each of seven
super–regions: 1, High income; 2, Central Europe, Eastern Europe, Central Asia; 3, Latin America
and Caribbean; 4, Southeast Asia, East Asia and Oceania; 5, North Africa / Middle East; 6,
Sub-Saharan Africa; 7, South Asia. For each model, population weighted root mean squared errors
(µgm−3) are given with dots denoting the median of the distribution from 25 training/evaluation
sets and the vertical lines the range of values.
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PREDICTIONS

Figure: Median estimates of annual averages of PM2.5 (µgm−3) for 2014 for each grid cell
(0.1o × 0.1o resolution) using DIMAQ.
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UNCERTAINTY

Figure: Half the width of 95% posterior credible intervals for 2014 for each grid cell (0.1o × 0.1o

resolution) using DIMAQ.
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POSTERIOR DISTRIBUTIONS

Figure: Medians of posterior distributions for
estimates of annual mean PM2.5 concentrations
(µgm−3) for 2014, in China.

Figure: Probability of exceeding 35 µgm−3 using
a Bayesian hierarchical model for each grid cell
(0.1o × 0.1o resolution) for 2014, in China.
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POPULATION EXPOSURES TO PM2.5
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Figure: Estimated annual average concentrations
of PM2.5 by grid cell (0.1o × 0.1o resolution).
Black crosses denote the annual averages
recorded at ground monitors.
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Figure: Estimated population level exposures
(blue bars) and population weighted
measurements from ground monitors (black
bars).



19/ 22

Introduction DIMAQ Results Conclusions

CONCLUSION

◮ DIMAQ integrates data from multiple sources with producing
high-resolution estimates of concentrations of ambient
particulate matter.

◮ Estimates used by the WHO and GBD in burden of disease
calculations.

◮ Future Developments
◮ Higher resolution estimates
◮ Within country variability
◮ Allowing for errors and biases in covariates
◮ Use data at native resolutions

◮ Possible approaches to address these issues
◮ Statistical downscaling
◮ Bayesian melding.
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INTERACTIVE MAP
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ANY QUESTIONS?


