

Data Integration Model for Air Quality: A Hierarchical Approach to the Global Estimation of Exposures to Ambient Air Pollution

Matthew Thomas

Supervised by Prof. Gavin Shaddick In collaboration with WHO and IHME

20th June 2017

1/22

・ ロ ト ・ 同 ト ・ 回 ト ・ 回 ト

Diviag	Kesuits	Conclusions
000 00000	00000 00000	0000

2/22

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへで

OUTLINE

- Introduction
- DIMAQ
- Results
- Conclusions

Introduction	DIMAQ	Results	Conclusions
•00	0000000	00000	0000

• Air pollution has been identified as a global health priority.

Introduction	DIMAQ	Results	Conclusions
●OO	0000000	00000	0000

- Air pollution has been identified as a global health priority.
- In 2016, the World Health Organisation (WHO) estimated that over 3 million deaths can be attributed to ambient air pollution.

Introduction	DIMAQ	Results	Conclusions
●00	0000000	00000	0000

- Air pollution has been identified as a global health priority.
- In 2016, the World Health Organisation (WHO) estimated that over 3 million deaths can be attributed to ambient air pollution.
- The Global Burden of Disease (GBD) project estimate that in 2015 ambient air pollution was in the top ten leading risks to global health.

Introduction	DIMAQ	Results	Conclusions
•00	0000000	00000	0000

- Air pollution has been identified as a global health priority.
- In 2016, the World Health Organisation (WHO) estimated that over 3 million deaths can be attributed to ambient air pollution.
- The Global Burden of Disease (GBD) project estimate that in 2015 ambient air pollution was in the top ten leading risks to global health.

3/22

 Burden of disease calculations require accurate estimates of population exposure for each country.

Introduction	DIMAQ	Results	Conclusions
000	0000000	00000	0000

ESTIMATING $PM_{2.5}$

4/22 <□▶<∄><≥><≥> ≥ ∽<<

Introduction	DIMAQ	Results	Conclusions
000	0000000	00000	0000

ESTIMATING $PM_{2.5}$

- Can utilise information from other sources
 - satellite remote sensing
 - atmospheric models
 - population estimates
 - land use
 - local network characteristics.
- Result of modelling and will be subject to uncertainties and biases.

5/22

Introduction	DIMAQ	Results	Conclusions
000	●0000000	00000	0000

 Developed to the Data Integration Model for Air Quality (DIMAQ).

000 000000 00000 0000	Introduction	DIMAQ	Results	Conclusions
	000	●0000000	00000	0000

- Developed to the Data Integration Model for Air Quality (DIMAQ).
- DIMAQ calibrates ground measurements to estimates from
 - satellite remote sensing,

000 000000 00000 0000	Introduction	DIMAQ	Results	Conclusions
	000	●0000000	00000	0000

- Developed to the Data Integration Model for Air Quality (DIMAQ).
- DIMAQ calibrates ground measurements to estimates from

6/22

- satellite remote sensing,
- specific components of chemical transport models

000 000000 00000 0000	Introduction	DIMAQ	Results	Conclusions
	000	●0000000	00000	0000

- Developed to the Data Integration Model for Air Quality (DIMAQ).
- DIMAQ calibrates ground measurements to estimates from

6/22

- satellite remote sensing,
- specific components of chemical transport models
- land use

000 000000 00000 0000	Introduction	DIMAQ	Results	Conclusions
	000	●0000000	00000	0000

- Developed to the Data Integration Model for Air Quality (DIMAQ).
- DIMAQ calibrates ground measurements to estimates from

6/22

. ・ロト・日本・モー・モー・モー・ショー シックの

- satellite remote sensing,
- specific components of chemical transport models
- land use
- population.

000 000000 00000 0000	Introduction	DIMAQ	Results	Conclusions
	000	●0000000	00000	0000

- Developed to the Data Integration Model for Air Quality (DIMAQ).
- DIMAQ calibrates ground measurements to estimates from
 - satellite remote sensing,
 - specific components of chemical transport models
 - land use
 - population.
- The coefficients in the calibration model are estimated by country.

6/22

· ◆□▶ ◆@▶ ◆臣▶ ◆臣▶ = 臣 = のへで

000 000000 00000 0000	Introduction	DIMAQ	Results	Conclusions
	000	●0000000	00000	0000

- Developed to the Data Integration Model for Air Quality (DIMAQ).
- DIMAQ calibrates ground measurements to estimates from
 - satellite remote sensing,
 - specific components of chemical transport models
 - land use
 - population.
- The coefficients in the calibration model are estimated by country.
- Model allows borrowing from higher aggregations and if information is not available on a country level.

6/22

000 000000 00000 0000	Introduction	DIMAQ	Results	Conclusions
	000	●0000000	00000	0000

- Developed to the Data Integration Model for Air Quality (DIMAQ).
- DIMAQ calibrates ground measurements to estimates from
 - satellite remote sensing,
 - specific components of chemical transport models
 - land use
 - population.
- The coefficients in the calibration model are estimated by country.
- Model allows borrowing from higher aggregations and if information is not available on a country level.
- Exploits a geographical nested hierarchy.
- Achieved using hierarchical random effects.

Introduction	DIMAQ	Results	Conclusions
000	0000000	00000	0000

REGIONS

Figure: Map of regions.

7/22

SAC

000 000000 00000 0000	Introduction	DIMAQ	Results	Conclusions
	000	0000000	00000	0000

SUPER-REGIONS

Figure: Map of super-regions.

Diving	Kesuits	Conclusions
0000000	00000	0000

Ground measurements at point locations, s, within grid cell, l, country, i, region, j, and super-region, k are denoted by Y_{slijk}.

000 0000 0000 0000	Introduction	DIMAQ	Results	Conclusions
	000	0000000	00000	0000

- Ground measurements at point locations, *s*, within grid cell, *l*, country, *i*, region, *j*, and super–region, *k* are denoted by Y_{slijk}.
- The model consists of a set of fixed and random effects, for both intercepts and covariates, and is given as follows,

$$\log(Y_{slijk}) = \tilde{\beta}_{0,lijk} + \sum_{p \in P} \beta_p X_{p,slijk} + \sum_{q \in Q} \tilde{\beta}_{q,lijk} X_{slijk} + \epsilon_{slijk} .$$

22

Sac

↓ □ ▶ < @ ▶ < @ ▶ < @ ▶ < @ ▶

0000 0000000 00000 0000	Introduction	DIMAQ	Results	Conclusions
	000	0000000	00000	0000

HIERARCHICAL RANDOM EFFECTS

The random effect terms have contributions from the country, the region and the super-region.

$$\tilde{\beta}_{q,ijk} = \beta_q + \beta_{q,ijk}^C + \beta_{q,jk}^R + \beta_{q,k}^{SR}$$

10/22

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

HIERARCHICAL RANDOM EFFECTS

The random effect terms have contributions from the country, the region and the super-region.

$$\tilde{\beta}_{q,ijk} = \beta_q + \beta_{q,ijk}^C + \beta_{q,ijk}^R + \beta_{q,k}^{SR}$$

The intercept also having a random effect for the cell representing within-cell variation in ground measurements.

$$\tilde{\beta}_{0,lijk} = \beta_0 + \beta_{0,lijk}^G + \beta_{0,ijk}^C + \beta_{0,jk}^R + \beta_{0,k}^{SR}$$

10/22 න ද ල

э

A B > A B > A B >

Introduction	DIMAQ	Results	Conclusions
000	00000000	00000	0000

RANDOM EFFECTS STRUCTURE

The coefficients for super-regions are distributed with mean equal to the overall mean (β₀, the fixed effect) and variance representing the between super-region variation,

$$\beta_k^{SR} \sim N(\beta, \sigma_{SR}^2)$$

11/22

500

Introduction	DIMAQ	Results	Conclusions
000	00000000	00000	0000

RANDOM EFFECTS STRUCTURE

The coefficients for super-regions are distributed with mean equal to the overall mean (β₀, the fixed effect) and variance representing the between super-region variation,

$$\beta_k^{SR} \sim N(\beta, \sigma_{SR}^2)$$

The coefficients for regions are distributed with mean equal to the coefficient for the super-region with variance representing the between region variation,

$$\beta_{jk}^R \sim N(\beta_k^{SR}, \sigma_{R,k}^2)$$

11/22

. ・ロト・日本・モー・モー・モー・ショー シックの

Introduction	DIMAQ	Results	Conclusions
000	00000000	00000	0000

RANDOM EFFECTS STRUCTURE

The coefficients for super-regions are distributed with mean equal to the overall mean (β₀, the fixed effect) and variance representing the between super-region variation,

$$\beta_k^{SR} \sim N(\beta, \sigma_{SR}^2)$$

The coefficients for regions are distributed with mean equal to the coefficient for the super-region with variance representing the between region variation,

$$\beta_{jk}^R \sim N(\beta_k^{SR}, \sigma_{R,k}^2)$$

 The coefficients for a country is distributed with mean equal to the coefficient for the region with variance representing the between country variation,

$$\beta_{ijk}^C \sim N(\beta_{jk}^R, \sigma_{C,jk}^2)$$
11/22

Introduction	DIMAQ	Results	Conclusions
000	000000●0	00000	0000
INFERENCE			

 Approximate Bayesian inference, such as Integrated Nested Laplace Approximations (INLA), provide fast and efficient methods for modelling with latent Gaussian models.

Introduction	DIMAQ	Results	Conclusions
000	00000000	00000	0000

INFERENCE

- Approximate Bayesian inference, such as Integrated Nested Laplace Approximations (INLA), provide fast and efficient methods for modelling with latent Gaussian models.
- INLA performs numerical calculations of posterior densities using Laplace Approximations hierarchical latent Gaussian models:

$$p(\theta_k|\boldsymbol{y}) = \int p(\boldsymbol{\theta}|\boldsymbol{y}) d\boldsymbol{\theta}_{-k} \quad p(z_j|\boldsymbol{y}) = \int p(z_j|\boldsymbol{\theta}, \boldsymbol{y}) p(\boldsymbol{\theta}|\boldsymbol{y}) d\boldsymbol{\theta}$$

12/22

12/22 シロト 4日 ト 4 王 ト 4 王 ト 4 日 ト 4 日 ト

Introduction	DIMAQ	Results	Conclusions
000	00000000	00000	0000

INFERENCE

- Approximate Bayesian inference, such as Integrated Nested Laplace Approximations (INLA), provide fast and efficient methods for modelling with latent Gaussian models.
- INLA performs numerical calculations of posterior densities using Laplace Approximations hierarchical latent Gaussian models:

$$p(\theta_k|\boldsymbol{y}) = \int p(\boldsymbol{\theta}|\boldsymbol{y}) d\boldsymbol{\theta}_{-k} \quad p(z_j|\boldsymbol{y}) = \int p(z_j|\boldsymbol{\theta}, \boldsymbol{y}) p(\boldsymbol{\theta}|\boldsymbol{y}) d\boldsymbol{\theta}$$

 Latent Gaussian models allows for sparse matrices, and therefore efficient computation.

12/22

Introduction DIM	IAQ	Results	Conclusions
000 000	00000	00000	0000

COMPUTATION

R-INLA was used to implement DIMAQ.

Introduction	DIMAQ	Results	Conclusions
000	0000000	00000	0000

COMPUTATION

- R-INLA was used to implement DIMAQ.
- ▶ Unable to run this model on standard computers (4-8GB RAM).

13/22

- Required the use of a High-Performance Computing (HPC) service.
 - Balena cluster at University of Bath.
 - 2×512 GB RAM nodes (32×32 GB RAM cores).

Introduction	DIMAQ	Results	Conclusions
000	0000000	00000	0000

COMPUTATION

- R-INLA was used to implement DIMAQ.
- ▶ Unable to run this model on standard computers (4-8GB RAM).

13/22

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

- Required the use of a High-Performance Computing (HPC) service.
 - Balena cluster at University of Bath.
 - ▶ 2×512 GB RAM nodes (32×32 GB RAM cores).
- Took an iterative approach to prediction.

Figure: Summaries of predictive ability of the GBD2013 model and DIMAQ, for each of seven super-regions: 1, High income; 2, Central Europe, Eastern Europe, Central Asia; 3, Latin America and Caribbean; 4, Southeast Asia, East Asia and Oceania; 5, North Africa / Middle East; 6, Sub-Saharan Africa; 7, South Asia. For each model, population weighted root mean squared errors (μgm^{-3}) are given with dots denoting the median of the distribution from 25 training/evaluation sets and the vertical lines the range of values.

Super Region

Introduction	DIMAQ	Results	Conclusions
000	0000000	00000	0000

PREDICTIONS

Figure: Median estimates of annual averages of $PM_{2.5}~(\mu gm^{-3})$ for 2014 for each grid cell (0.1° \times 0.1° resolution) using DIMAQ.

Introduction	DIMAQ	Results	Conclusions
000	0000000	0000	0000

UNCERTAINTY

Figure: Half the width of 95% posterior credible intervals for 2014 for each grid cell (0.1° \times 0.1° resolution) using DIMAQ.

16/22

SAC

・ロト ・ 理ト ・ ヨト ・ ヨト

Introduction	DIMAQ	Results	Conclusions
000	0000000	00000	0000

POSTERIOR DISTRIBUTIONS

Figure: Medians of posterior distributions for estimates of annual mean $PM_{2.5}$ concentrations (μgm^{-3}) for 2014, in China.

Figure: Probability of exceeding 35 μ gm⁻³ using a Bayesian hierarchical model for each grid cell $(0.1^{\circ} \times 0.1^{\circ} \text{ resolution})$ for 2014, in China.

Introduction	DIMAQ	Results	Conclusions
000	0000000	0000	0000

POPULATION EXPOSURES TO PM_{2.5}

Figure: Estimated annual average concentrations of PM_{2.5} by grid cell $(0.1^{\circ} \times 0.1^{\circ}$ resolution). Black crosses denote the annual averages recorded at ground monitors.

Figure: Estimated population level exposures (blue bars) and population weighted measurements from ground monitors (black bars).

Introduction	DIMAQ	Results	Conclusions
000	00000000	00000	•000
Conclusion			

 DIMAQ integrates data from multiple sources with producing high-resolution estimates of concentrations of ambient particulate matter.

Introduction	DIMAQ	Results	Conclusions
000	00000000	00000	•000

CONCLUSION

- DIMAQ integrates data from multiple sources with producing high-resolution estimates of concentrations of ambient particulate matter.
- Estimates used by the WHO and GBD in burden of disease calculations.

Introduction	DIMAQ	Results	Conclusions
000	00000000	00000	•000

CONCLUSION

 DIMAQ integrates data from multiple sources with producing high-resolution estimates of concentrations of ambient particulate matter.

19/22

- Estimates used by the WHO and GBD in burden of disease calculations.
- Future Developments
 - Higher resolution estimates
 - Within country variability
 - Allowing for errors and biases in covariates
 - Use data at native resolutions

Introduction	DIMAQ	Results	Conclusions
000	00000000	00000	•000

CONCLUSION

 DIMAQ integrates data from multiple sources with producing high-resolution estimates of concentrations of ambient particulate matter.

19/22

- Estimates used by the WHO and GBD in burden of disease calculations.
- Future Developments
 - Higher resolution estimates
 - Within country variability
 - Allowing for errors and biases in covariates
 - Use data at native resolutions
- Possible approaches to address these issues
 - Statistical downscaling
 - Bayesian melding.

Introduction	DIMAQ	Results	Conclusions
000	0000000	00000	0000

INTERACTIVE MAP

~	Results	Conclusions
000 0000000	00000	0000

REFERENCES

DIMAQ Paper:

http://onlinelibrary.wiley.com/doi/10.1111/rssc.12227/full

► WHO Report:

http://who.int/phe/publications/air-pollution-global-assessment/end

► GBD Paper:

http://www.thelancet.com/journals/lancet/article/PIIS0140-6736(16)

21/22

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Interactive Map:

http://maps.who.int/airpollution/

	DIMAQ Results	Conclusions
000 0000000 00000 00	000000 000000	0000

ANY QUESTIONS?

22/22 <□▶<∄▶<≧▶<≧▶ < ≧▶<≧ > <</td>