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Introduction

Air pollution represents one of the most important environmental risk factors
to human health globally. Traditionally, information on air pollution concen-
trations comes from ground monitoring networks however, there may be areas
in which this information sparse or is not of sufficient quality. Here, ground
monitoring information is supplemented with information from other sources,
including road networks, land use and chemical transport models (CTM),
within a Bayesian hierarchical modelling framework. Using statistical down-
scaling, this enables concentrations of pollutants to be predicted, together
with measures of uncertainty, at a high-resolution. Here, concentrations of
fine particulate matter (PM2.5) are obtained at a resolution of 1km × 1km for
20 countries in Western Europe.

Data

Annual average concentrations of PM2.5 (µgm−3) between 2010 and 2016 for
1210 ground monitoring sites were extracted from European Environment
Agency’s (EEA) Air Qualty e-Reporting database.
The study area consists of 20 countries in Western Europe: Austria, Bel-
gium, Denmark, Finland, France, Germany, Greece, Hungary, Ireland, Italy,
Liechtenstein, Lithuania, Luxembourg, Netherlands, Norway, Portugal, Spain,
Sweden, Switzerland and the United Kingdom.
Information on roads (length of major roads and length of all roads), other land
use (percentage of areas that are residential, industry, ports, urban green space,
built up, natural land) and altitude were retrieved from the EEA Corine Land
Cover 2006, EuroStreets digital road network and SRTM Digital Elevation
Database respectively, all available at a 1km × 1km resolution.
Estimates of PM2.5 were also obtained from the MACC-II ENSEMBLE CTM,
at a 10km × 10km resolution.

Statistical Downscaling

Information from roads, land use, altitude, CTMs are calibrated against
ground measurements. Let Yst denote the log of the annual average PM2.5
measurement from ground monitors, available at a discrete set of NS loca-
tions s = {s1, s2, . . . , sNS

} and NT time points s = {t1, t2, . . . , tNT
}

Yst = β0st +
P∑
p=1

βpstXplst + εst

Here, Xplt denote gridded estimates of roads, land use, altitude and the
MACC-II ENSEMBLE CTM, on grid of NpL cells l ∈ {l1, l2, . . . , lNpL

} with
ls denotes the grid cell containing ground monitor(s) at location s, and
εs ∼ N(0, σ2

ε) is a i.i.d random error term.
The coefficients, βpst, p = 0, 1, . . . , P comprise of a series random effects that
allow the intercept and coefficient associated with the CTM to vary over space
and time

βpst = αp + θpt + κpst.

• αp are fixed effects and are assigned N(0, 1000) priors
• βpt are temporal random effects and are assigned RW1 priors
• κpst are spatio-temporal random effects; a multivariate Normal
distribution with covariance representing a separable space-time model
using a Kronecker product of space and time.

Inference

Downscaling models are often fit using Markov Chain Monte Carlo (MCMC)
(Berrocal et al., 2010). However, with larger amounts of data, computation
may be challenging. Here, inference is performed using integrated nested
Laplace approximations (INLA), using an stochastic partial differential equa-
tion (SPDE) to provide a bridge between spatial data modelling on a con-
tinuous surface and Gaussian Markov Random Field (Lindgren et al., 2011).
Fields that are utilised by R-INLA to provide efficient computation.

Prediction

Full posterior predictive distributions of air pollution concentrations are ob-
tained using Monte Carlo simulation. This provides a computationally efficient
method of performing prediction at high resolution over space and time and
addresses the computational issues that may be associated with jointly fitting
the model and performing prediction.

Results

Figure 1 shows the spatial variation in predicted annual average concentrations
and Figure 2 the changes in annual average concentrations over the study
period. In the case of the latter, it can be seen that PM2.5 is decreasing in
large parts of Western Europe.
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Figure 1: Median estimates of annual averages of PM2.5

(µgm−3) for 2016 for each grid cell (1km × 1km resolution).
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Figure 2: Median change in annual average PM2.5

(µgm−3) for each grid cell (1km × 1km resolution)

Figures 3 and 4 shows the estimated annual average PM2.5 for Paris in 2016
from the CTM and the medians of the the posterior predictive distributions
in each cell. Figure 4 shows a clear increase in granularity and provides sub-
stantial additional information on the spatial distribution of PM2.5.
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Figure 3: Estimated annual average PM2.5 in 2016 from the
CTM for Paris.

0 2 4 6 8 10 12 14 16

Figure 4: Predictive posterior median annual average PM2.5 in
2016 for Paris.

Discussion

The ability to produce comprehensive, accurate, high-resolution, estimates of
concentrations of pollutants over space and time is essential for policy sup-
port, epidemiological analyses and in estimating the burden of air pollution
on human health.
When combining data from different sources, it is important to acknowledge
possible changes in support, or differences in the spatial and temporal resolu-
tions for which data is available. Here, ground measurements are available at
point locations and the possibility of within grid-cell variability (the level at
which CTM estimates are available) is incorporated in the calibration model
by allowing the coefficient associated with CTM (and the intercept) to vary
continuously over space and time.
Future research include extending the model to allow multiple pollutants to be
considered to allow dependencies between pollutants, such as NO2 and PM2.5
to be exploited in order to reduce both bias and uncertainty.
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