2990

Data Integration for high-resolution estimation of air pollution concentrations

Matthew Thomas

Joint work with Gavin Shaddick, Daniel Simpson, Kees de Hoogh and Jim Zidek

14*th* July 2018

 2990

重

イロト イ部 トイをトイをトー

OUTLINE

- \blacktriangleright Introduction
- \triangleright Statistical Calibration
- **Air Quality in Europe**
- \blacktriangleright Summary

Introduction

 2990

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶ ○ 君 ○

INTRODUCTION

- \triangleright Air pollution has been identified as a global health priority
- Fine particulate matter ($PM_{2.5}$) is associated with some adverse health outcomes
- \triangleright WHO guidelines
	- Annual averages should not exceed 10 μ gm⁻³
- \triangleright Estimation of health burden requires accurate estimates of exposures to air pollution
	- \blacktriangleright Localised levels
	- \triangleright Associated measures of uncertainty

GROUND MONITORING

- \blacktriangleright Information on exposures to air pollution traditionally comes from ground monitors
- \blacktriangleright Monitoring networks for PM2.⁵ are growing worldwide
- \triangleright Density of networks vary considerably
	- \blacktriangleright Urban and industrial areas
	- \blacktriangleright High and middle income countries

Figure: Locations of ground monitors measuring $PM₂$ s in 2016. Colours denote the annual average concentrations ($\mu{\rm gm}^{-3})$ of $\rm PM_{2.5}$

 $2Q$

DATA FROM MULTIPLE SOURCES

- \blacktriangleright Measurements from ground monitoring
- \triangleright Chemical transport models
- \blacktriangleright Land use regression
- \blacktriangleright Different resolutions
	- \triangleright Ground monitors (points)
	- \blacktriangleright Chemical transport models (10km×10km)
	- \blacktriangleright Land use regression (1km×1km)
- \blacktriangleright All will be subject to uncertainties and biases

 299

DATA FROM MULTIPLE SOURCES

Figure: (Left) Estimates of annual average PM_{2.5} (μ gm⁻³) from the MACC-II ENSEMBLE chemical transport model in 2016 for each grid cell (10km \times 10km resolution) and (Right) Length of major roads within a 21km buffer of each grid cell (1km \times 1km resolution)

Statistical Calibration

 2990

→ ロト→ 伊ト→ 星ト→ 星ト → 星ー

STATISTICAL CALIBRATION

 \triangleright The aim is to calibrate estimates from chemical transport models, satellite remote sensing, land use regression and topography, *Xpls^t* , against measurements from ground monitors, *Yst*,

$$
Y_{st} = \beta_0 + \sum_{i=1}^{N} \beta_i X_{il_st} + \epsilon_{st}
$$

- \blacktriangleright This will allow us to predict surface $PM_{2.5}$ where there is no ground monitoring information
- \blacktriangleright However, the relationship between ground monitors and other variables may vary over space and time

B $2Q$

◆ロト ◆伊ト ◆ミト → ミト

STATISTICAL DOWNSCALING

- \triangleright Need to allow for the variation in the coefficients
- \triangleright Coefficients can vary spatio-temporally

$$
Y_{st} = \beta_{0st} + \sum_{i=1}^{N} \beta_{ist} X_{il_st} + \epsilon_{st}
$$

$$
\beta_{pst} = \alpha_p + \theta_{pt} + m_{ps} + \kappa_{pst}
$$

- \triangleright Generic coefficient $β_{st} ≡ β_{pst}$ comprises of
	- Fixed effect α
	- **F** Temporal random effect θ_t
	- \blacktriangleright Spatial random effect m_s
	- ^I Spatio-temporal random effect κ*st*

 $2Q$

÷.

PRIORS

- \blacktriangleright Fixed effects: α ∼ *N*(0, 1000)
- \blacktriangleright Temporal random effects: $θ_t \sim N(\theta_{pt-1}, \sigma_{θ}^2)$
- Example: Global air quality (more later)
	- \blacktriangleright Spatial random effects: *m* ∼ *N*(**0**, $\sigma_m^2 \Sigma_m$)
	- \triangleright Matérn covariance function
- \blacktriangleright Example: Air quality in Europe
	- Spatio-temporal random effects:
	- \blacktriangleright AR1 in time

$$
\begin{array}{rcl}\n\kappa_{st} & = & \rho \kappa_{st-1} + \omega_{st} \\
\omega_t & \sim & N(\mathbf{0}, \sigma_\omega^2 \Sigma_\omega)\n\end{array}
$$

- \triangleright Matérn covariance function
- \blacktriangleright Separable in space and time

APPROXIMATION TO THE SPATIO-TEMPORAL FIELDS

- \triangleright Computationally challenging to fit multiple spatio-temporal processes
- \blacktriangleright Approximation to the spatial field using a triangulation
- \blacktriangleright Approximate using

$$
\omega_s = \sum_{k=1}^n \phi_{ks} w_k
$$

where *n* is the number of vertices (or nodes) of the triangulation, $\{\phi_{ks}\}\$ are a set of bases functions and {*wk*} are a set of weights

 $2Q$

APPROXIMATION TO THE SPATIO-TEMPORAL FIELDS

- If ϕ_{ks} are piecewise linear then ω_s is a Gaussian Markov Random Field
	- \blacktriangleright Conditional independence
	- \blacktriangleright Sparse precision matrices
- \blacktriangleright The approximation to the spatial field is the solution to Stochastic Partial Differential Equation (SPDE)
- \blacktriangleright Latent Gaussian model
- \triangleright Inference based on Integrated Nested Laplace Approximations (INLA)
- \blacktriangleright Penalised complexity priors for model hyperparameters

 $2Q$

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶ ○ 君 ○

PREDICTION

- \blacktriangleright High resolution estimates of air pollution concentrations are required over space and time
- \blacktriangleright Computationally expensive
- \blacktriangleright Monte Carlo Simulation
	- ▶ Draw *M* samples from the joint posterior of the model parameters
	- \blacktriangleright Produce *M* joint samples using the linear predictor
	- \blacktriangleright Aggregation is fairly straightforward
	- \triangleright Summaries of the marginal posterior distributions can then be made

Air Quality in Europe

 290

イロトメ 伊 トメ ミトメ ミト

PREDICTIONS

Figure: Median estimates of annual averages of (Left) PM_{2.5} and (Right) NO2 (in μ gm^{−3}) for 2010
for each grid cell (1km × 1km resolution).

CTM VS PREDICTIONS

Figure: (Left) Estimated level of the annual average $PM_{2.5}$ in 2016 from the CTM for Paris and (Right) Predictive posterior median annual average of the annual average $PM_{2.5}$ in 2016

 $2Q$

K ロ ▶ K 伊 ▶ K ヨ ▶ K ヨ ▶

CTM VS PREDICTIONS

Figure: (Left) Estimated level of the annual average $NO₂$ in 2016 from the CTM for Paris and (Right) Predictive posterior median annual average of the annual average $NO₂$ in 2016

 290

イロトメ 御 トメ きょメ きょ

EXCEEDANCES

Figure: Probability that annual average PM_{2.5} exceeds 10 μ gm^{−3} (Left) for 2010 and (Right) for 2016 for each grid cell (1km \times 1km resolution).

 290

ă

イロトメ 倒す メミトメミト

CHANGES OVER TIME

Figure: Median change in the annual average PM_{2.5} between 2010 and 2016 for each grid cell (1km \times 1km resolution).

Summary

ミー $2Q$

イロト 不優 トイミト イミト

SUMMARY

- \triangleright Developed a model that
	- \blacktriangleright Integrates data from multiple sources
	- \blacktriangleright Integrates data with multiple resolutions
	- \blacktriangleright Produces high-resolution estimates of air pollution with associated measures of uncertainty.
- \blacktriangleright Future work
	- \blacktriangleright Multivariate (PM_{2.5}, NO₂, PM₁₀ and O₃)
	- \triangleright Burden of disease calculations

ANY QUESTIONS?

