

Data Integration for high-resolution estimation of air pollution concentrations

Matthew Thomas

Joint work with Gavin Shaddick, Daniel Simpson, Kees de Hoogh and Jim Zidek

14th July 2018

OUTLINE

- Introduction
- ► Statistical Calibration
- Air Quality in Europe
- Summary

Introduction

INTRODUCTION

- ▶ Air pollution has been identified as a global health priority
- ► Fine particulate matter (PM_{2.5}) is associated with some adverse health outcomes
- WHO guidelines
 - ► Annual averages should not exceed $10 \mu \text{gm}^{-3}$
- Estimation of health burden requires accurate estimates of exposures to air pollution
 - Localised levels
 - Associated measures of uncertainty

GROUND MONITORING

- Information on exposures to air pollution traditionally comes from ground monitors
- Monitoring networks for PM_{2.5} are growing worldwide
- Density of networks vary considerably
 - Urban and industrial areas
 - High and middle income countries

Figure: Locations of ground monitors measuring PM_{2.5} in 2016. Colours denote the annual average concentrations (μgm^{-3}) of PM_{2.5}

DATA FROM MULTIPLE SOURCES

- Measurements from ground monitoring
- Chemical transport models
- Land use regression
- Different resolutions
 - Ground monitors (points)
 - ► Chemical transport models (10km×10km)
 - ► Land use regression (1km×1km)
- All will be subject to uncertainties and biases

DATA FROM MULTIPLE SOURCES

Figure: (Left) Estimates of annual average PM $_{2.5}$ (μ gm $^{-3}$) from the MACC-II ENSEMBLE chemical transport model in 2016 for each grid cell (10km \times 10km resolution) and (Right) Length of major roads within a 21km buffer of each grid cell (1km \times 1km resolution)

Statistical Calibration

STATISTICAL CALIBRATION

▶ The aim is to calibrate estimates from chemical transport models, satellite remote sensing, land use regression and topography, X_{pl_st} , against measurements from ground monitors, Y_{st} ,

$$Y_{st} = \beta_0 + \sum_{i=1}^{N} \beta_i X_{il_s t} + \epsilon_{st}$$

- ▶ This will allow us to predict surface PM_{2.5} where there is no ground monitoring information
- ▶ However, the relationship between ground monitors and other variables may vary over space and time

STATISTICAL DOWNSCALING

- Need to allow for the variation in the coefficients
- Coefficients can vary spatio-temporally

$$Y_{st} = \beta_{0st} + \sum_{i=1}^{N} \beta_{ist} X_{il_st} + \epsilon_{st}$$

$$\beta_{pst} = \alpha_p + \theta_{pt} + m_{ps} + \kappa_{pst}$$

- ▶ Generic coefficient $\beta_{st} \equiv \beta_{vst}$ comprises of
 - Fixed effect α
 - ▶ Temporal random effect θ_t
 - Spatial random effect m_s
 - Spatio-temporal random effect κ_{st}

PRIORS

- Fixed effects: $\alpha \sim N(0, 1000)$
- ▶ Temporal random effects: $\theta_t \sim N(\theta_{vt-1}, \sigma_{\theta}^2)$
- ► Example: Global air quality (more later)
 - Spatial random effects: $m \sim N(\mathbf{0}, \sigma_m^2 \Sigma_m)$
 - Matérn covariance function
- Example: Air quality in Europe
 - Spatio-temporal random effects:
 - AR1 in time

$$\kappa_{st} = \rho \kappa_{st-1} + \omega_{st}$$
 $\omega_t \sim N(\mathbf{0}, \sigma_\omega^2 \Sigma_\omega)$

- Matérn covariance function
- Separable in space and time

APPROXIMATION TO THE SPATIO-TEMPORAL FIELDS

- Computationally challenging to fit multiple spatio-temporal processes
- Approximation to the spatial field using a triangulation
- ► Approximate using

$$\omega_s = \sum_{k=1}^n \phi_{ks} w_k$$

where n is the number of vertices (or nodes) of the triangulation, $\{\phi_{ks}\}$ are a set of bases functions and $\{w_k\}$ are a set of weights

APPROXIMATION TO THE SPATIO-TEMPORAL FIELDS

- If ϕ_{ks} are piecewise linear then ω_s is a Gaussian Markov Random Field
 - Conditional independence
 - Sparse precision matrices
- ▶ The approximation to the spatial field is the solution to Stochastic Partial Differential Equation (SPDE)
- Latent Gaussian model
- Inference based on Integrated Nested Laplace Approximations (INLA)
- Penalised complexity priors for model hyperparameters

PREDICTION

- High resolution estimates of air pollution concentrations are required over space and time
- ► Computationally expensive
- ▶ Monte Carlo Simulation
 - ▶ Draw *M* samples from the joint posterior of the model parameters
 - Produce M joint samples using the linear predictor
 - Aggregation is fairly straightforward
 - Summaries of the marginal posterior distributions can then be made

Air Quality in Europe

PREDICTIONS

Figure: Median estimates of annual averages of (Left) PM $_{2.5}$ and (Right) NO2 (in $\mu \rm gm^{-3}$) for 2010 for each grid cell (1km \times 1km resolution).

CTM VS PREDICTIONS

Figure: (Left) Estimated level of the annual average PM_{2.5} in 2016 from the CTM for Paris and (Right) Predictive posterior median annual average of the annual average PM_{2.5} in 2016

CTM VS PREDICTIONS

Figure: (Left) Estimated level of the annual average NO₂ in 2016 from the CTM for Paris and (Right) Predictive posterior median annual average of the annual average NO₂ in 2016

EXCEEDANCES

Figure: Probability that annual average PM $_{2.5}$ exceeds 10 μ gm $^{-3}$ (Left) for 2010 and (Right) for 2016 for each grid cell (1km imes 1km resolution).

CHANGES OVER TIME

Figure: Median change in the annual average $PM_{2.5}$ between 2010 and 2016 for each grid cell (1km \times 1km resolution).

Summary

SUMMARY

- Developed a model that
 - Integrates data from multiple sources
 - Integrates data with multiple resolutions
 - Produces high-resolution estimates of air pollution with associated measures of uncertainty.
- ▶ Future work
 - ► Multivariate (PM_{2.5}, NO₂, PM₁₀ and O₃)
 - Burden of disease calculations

ANY QUESTIONS?

