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INTRODUCTION

I Air pollution has been identified as a global health priority
I Fine particulate matter (PM2.5) is associated with some adverse

health outcomes
I WHO estimate 4.2 million deaths globally are attributable to PM2.5

I Estimation of health burden requires accurate estimates of
exposures to air pollution
I Localised levels
I Associated measures of uncertainty
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GROUND MONITORING

I Information on exposures to
air pollution traditionally
comes from ground monitors

I Monitoring networks for
PM2.5 are growing worldwide

I Density of networks vary
considerably
I Urban and industrial areas
I High and middle income

countries
Figure: Locations of ground monitors measuring
PM2.5 in 2016. Colours denote the annual
average concentrations (µgm−3) of PM2.5
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DATA FROM MULTIPLE SOURCES

I Ground monitoring
I Chemical transport models
I Land use regression
I Different resolutions

I Ground monitors (points)
I Chemical transport models

(10km×10km)
I Land use regression

(1km×1km or
100m×100m)

I All will be subject to
uncertainties and biases
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STATISTICAL CALIBRATION

I The aim is to calibrate estimates from chemical transport models,
satellite remote sensing, land use regression and topography,
Xplst, against measurements from ground monitors, Yst,

Yst = β0 + β1X1lst +

N∑
i=2

βiXilst + εst

I This will allow us to predict surface PM2.5 where there is no
ground monitoring information

I However, the relationship between ground monitors and other
variables may vary over space and time
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STATISTICAL DOWNSCALING

I Need to allow for the variation in the coefficients
I Coefficients can vary spatio-temporally

Yst = β̃0st + β̃1stX1lst +

N∑
i=2

βistXilst + εst

β̃pst = αp + βpst, p = 0, 1

I Coefficients β̃pst, p = 0, 1, comprise of
I Fixed effects αp
I Spatio-temporal random effect βpst
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PRIORS

I Spatio-temporal random effects
I AR1 in time
I Matérn covariance function
I Separable in space and time

I Computationally challenging to fit
multiple spatio-temporal processes

I The approximation to the spatial
field is the solution to Stochastic
Partial Differential Equation (SPDE)
I Conditional independence
I Sparse precision matrices
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APPROXIMATION TO THE SPATIO-TEMPORAL FIELDS

I Latent Gaussian model
I Inference based on Integrated Nested Laplace Approximations

(INLA)
I Penalised complexity priors for model hyperparameters
I High resolution estimates of air pollution concentrations are

required over space and time
I Computationally expensive
I Monte Carlo Simulation
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PREDICTIONS

Figure: Predictive posterior median annual averages of (Left) NO2 and (Right) PM2.5 (in µgm−3)
for 2016 for each grid cell (1km × 1km resolution).
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CTM VS PREDICTIONS

Figure: Estimated annual average concentrations of (Left) NO2 and (Right) PM2.5 (in µgm−3) for
2016 from the MACC-II CTM for each grid cell in Paris (10km × 10km).
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CTM VS PREDICTIONS

Figure: Predictive posterior median annual average concentrations of (Left) NO2 and (Right) PM2.5

(in µgm−3) in 2016 for each grid cell in Paris (1km × 1km).
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CTM VS PREDICTIONS

Figure: Predictive posterior median annual average concentrations of (Left) NO2 and (Right) PM2.5
in 2016 for each grid cell in Paris (100m × 100m).
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EXCEEDANCES

Figure: Probability that annual average PM2.5 exceeds 10 µgm−3 (Left) for 2010 and (Right) for
2016 for each grid cell (1km × 1km resolution).
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CHANGES OVER TIME

Figure: Median change in the annual average PM2.5 between 2010 and 2016 for each grid cell (1km
× 1km resolution).
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SUMMARY

I Developed a model that
I Integrates data from multiple sources
I Integrates data with multiple resolutions
I Produces high-resolution estimates of air pollution with associated

measures of uncertainty.
I Future work

I Multivariate (PM2.5, NO2, PM10 and O3)
I Higher temporal resolution
I Burden of disease calculations
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ARXIV PREPRINT
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ANY QUESTIONS?


