Estimating anti-retroviral treatment coverage using facility level data

Matthew Thomas

Imperial College London

UNAIDS Reference Group Meeting

8th May 2019

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

ESTIMATING ART COVERAGE

Reallocation model

- Crude solution to the problem
- Matches data from district to district
- Doesn't factor in where people live; size and location of facilities.
- Challenge lies in combining
 - Number people living with HIV
 - Number of people taking ART
 - Choice of facilities (Distance, facility characteristics etc.)
- Probabilistic modelling

500

ESTIMATING ART COVERAGE

Reallocation model

- Crude solution to the problem
- Matches data from district to district
- Doesn't factor in where people live; size and location of facilities.
- Challenge lies in combining
 - Number people living with HIV
 - Number of people taking ART
 - Choice of facilities (Distance, facility characteristics etc.)
- Probabilistic modelling

▲□▶▲□▶▲□▶▲□▶ □ のQで

ESTIMATING ART COVERAGE

Reallocation model

- Crude solution to the problem
- Matches data from district to district
- Doesn't factor in where people live; size and location of facilities.
- Challenge lies in combining
 - Number people living with HIV
 - Number of people taking ART
 - Choice of facilities (Distance, facility characteristics etc.)
- Probabilistic modelling

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

A household

- ▶ *N_i* individuals
- *ρ_i* prevalence
 α_i probability of receiving ART

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

- A household
 - ▶ N_i individuals
 - $\triangleright \rho_i$ prevalence
 - α_i probability of receiving ART
- Mean number of people receiving ART is given by

$$\alpha_i \cdot \rho_i \cdot N_i$$

▲□▶ ▲□▶ ▲ □▶ ★ □▶ = □ ● ● ●

A

A household

- N_i individuals
- ρ_i prevalence
- α_i probability of receiving ART
- Mean number of people receiving ART is given by

$$\alpha_i \cdot \rho_i \cdot N_i$$

Choice in which facility to attend

ヘロト 人間 とくほとく ほとう

€ 990

- Choice in which facility to attend
- "Distance" to each facility

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

- Choice in which facility to attend
- "Distance" to each facility
- Probability of attending facility *j* from household *i*

 $C_{ji} \propto exp(-d_{ji})$

Facility	Α	В	С	D
Time	19	18	21	43
Probability	0.32	0.33	0.28	0.06

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

 Distance is not the only factor influencing movement

▲□▶ ▲□▶ ▲ □▶ ★ □▶ = □ ● ● ●

- Distance is not the only factor influencing movement
- Probability of attending facility *j* from household *i*

 $C_{ji} \propto M_j \cdot exp(-d_{ji})$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

- Distance is not the only factor influencing movement
- Probability of attending facility *j* from household *i*

 $C_{ji} \propto M_j \cdot exp(-d_{ji})$

Facility	Α	В	С	D
Time	19	18	21	43
Probability	0.32	0.33	0.28	0.06
Probability	0.21	0.21	0.18	0.40

- Distance is not the only factor influencing movement
- Probability of attending facility *j* from household *i*

 $C_{ji} \propto M_j \cdot exp(-d_{ji})$

The number of people in household *i* attending facility *j* for ART with favourability

$$C_{ji} \cdot \alpha_i \cdot \rho_i \cdot N_i$$

 Sum across households to obtain the number of patients attending facility.

Facility	Α	В	С	D
Time	19	18	21	43
Probability	0.32	0.33	0.28	0.06
Probability	0.21	0.21	0.18	0.40

Estimate ART coverage using

$$\hat{Y}_i^{ART} \sim Bin(\rho_i \cdot N_i, \alpha_i)$$

- People move from moving to facility j from region i with probability C_{ji}
- Therefore we are observing

$$Y_j^{ART} = \sum_i C_{ji} \hat{Y}_i^{ART}$$

▲□▶▲□▶▲□▶▲□▶ □ のQで

- How do we fit this in practice?
 - Sum of a binomial is not a binomial
 - ▶ How do we get the *C*_{*ji*} (catchments)?

ART coverage in region *i* modelled as

$$\hat{Y}_{i}^{ART} \sim Poisson(\rho_{i} \cdot N_{i} \cdot \alpha_{i})$$

People move from region *j* to facility *i* with probability C_{ji}

$$\begin{split} Y_{j}^{ART} &= \sum_{i} C_{ji} \hat{Y}_{i}^{ART} \\ Y_{j}^{ART} &\sim \textit{Poisson}\left(\sum_{i} C_{ji} \cdot \rho_{i} \cdot N_{i} \cdot \alpha_{i}\right) \end{split}$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

EXAMPLE: MALAWI

Figure: (Left) Map of Traditional Authorities in South-eastern Malawi, (Center) Map of Facilities administering ART South-eastern Malawi and (Right) Travel time to nearest facility, by grid cell (1km · 1km resolution).

Data

Prevalence

- ► HIVE
- Population-based HIV impact assessment survey (PHIA)
- Demographic and household surveys (DHS)
- Antenatal care facilities (ANC)
- Population
 - worldpop
 - Age and sex categorised
- Anti-retroviral therapy (ART)
- Travel times

Figure: (Left) Locations of facilities administering ART. (Right) Estimates of population, by grid cell (1km · 1km resolution).

Sac

$$Y_j^{ART} \sim Poisson\left(\sum_i C_{ji} \cdot \rho_i \cdot \mathbf{N}_i \cdot \alpha_i\right)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ∽ � ♥

Population of region *i* - Fixed, obtained from worldpop

$$Y_j^{ART} \sim Poisson\left(\sum_i C_{ji} \cdot \boldsymbol{\rho}_i \cdot N_i \cdot \alpha_i\right)$$

- Population of region *i* Fixed, obtained from worldpop
- **Prevalence of region** *i* Fixed, obtained from HIVE

$$Y_j^{ART} \sim Poisson\left(\sum_i C_{ji} \cdot \rho_i \cdot N_i \cdot {oldsymbol lpha}_i
ight)$$

- Population of region *i* Fixed, obtained from worldpop
- Prevalence of region *i* Fixed, obtained from HIVE
- ART coverage of region *i* -

$$\operatorname{logit}(\alpha_i) \sim N(0.7, 0.3^2)$$

$$Y_j^{ART} \sim Poisson\left(\sum_i \mathbf{C}_{ji} \cdot \rho_i \cdot N_i \cdot \alpha_i\right)$$

Catchment probabilities from region *i* to facility *i* -

 $C_{ji} \propto M_j \cdot \kappa(d_{ji})$

$$Y_j^{ART} \sim Poisson\left(\sum_i C_{ji} \cdot \rho_i \cdot N_i \cdot \alpha_i\right)$$

Catchment probabilities from region *i* to facility *i* -

 $C_{ji} \propto M_j \cdot \kappa(d_{ji})$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ∽ � ♥

d_{ji} average distance from region *j* to facility *i*

$$Y_j^{ART} \sim Poisson\left(\sum_i C_{ji} \cdot \rho_i \cdot N_i \cdot \alpha_i\right)$$

Catchment probabilities from region *i* to facility *i* -

 $C_{ji} \propto M_j \cdot \kappa(d_{ji})$

d_{ji} average distance from region *j* to facility *i* Kernel controlling the

 $\kappa(x) = \exp(-x)$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

$$Y_j^{ART} \sim Poisson\left(\sum_i C_{ji} \cdot \rho_i \cdot N_i \cdot \alpha_i\right)$$

Catchment probabilities from region *i* to facility *i* -

 $C_{ji} \propto \mathbf{M}_j \cdot \kappa(d_{ji})$

d_{ji} average distance from region *j* to facility *i*

Kernel controlling the

$$\kappa(x) = \exp(-x)$$

'Favourability' factor

$$log(M_j) = \beta_{0j} + \sum_k \beta_k X_{jk}$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

RESULTS

Figure: Estimated ART coverage under different scales of the kernels.

RESULTS

Figure: Probability of attending Bangwe Health Centre in Blantyre under different scales of the kernels.

RESULTS

Figure: Estimated ART coverage with altered prior on the ART coverage.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ のへぐ

SUMMARY AND FUTURE WORK

- Produced a model that estimates

 - ART coverageProbabilistic catchments
- Future work
 - Incorporate other sources of data?

▲□▶ ▲□▶ ▲ □▶ ★ □▶ = □ ● ● ●

Other types of catchment?

ANY QUESTIONS?

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@