Estimating anti-retroviral treatment coverage using facility level data

Matthew Thomas
Imperial College London

UNAIDS Reference Group Meeting
$8^{\text {th }}$ May 2019

Estimating ART Coverage

- Reallocation model
- Crude solution to the problem
- Matches data from district to district
- Doesn't factor in where people live; size and location of facilities.
- Challenge lies in combining
- Number people living with HIV
- Number of people taking ART
- Choice of facilities (Distance, facility characteristics etc.)
- Probabilistic modelling

Estimating ART Coverage

- Reallocation model
- Crude solution to the problem
- Matches data from district to district
- Doesn't factor in where people live; size and location of facilities.
- Challenge lies in combining
- Number people living with HIV
- Number of people taking ART
- Choice of facilities (Distance, facility characteristics etc.)
- Probabilistic modelling

Estimating ART Coverage

- Reallocation model
- Crude solution to the problem
- Matches data from district to district
- Doesn't factor in where people live; size and location of facilities.
- Challenge lies in combining
- Number people living with HIV
- Number of people taking ART
- Choice of facilities (Distance, facility characteristics etc.)
- Probabilistic modelling

Motivating Example

- A household
- N_{i} individuals
- ρ_{i} prevalence
- α_{i} probability of receiving ART

合

Motivating Example

- A household
- N_{i} individuals
- ρ_{i} prevalence
- α_{i} probability of receiving ART

- Mean number of people receiving ART is given by

$$
\alpha_{i} \cdot \rho_{i} \cdot N_{i}
$$

Motivating Example

- A household
- N_{i} individuals
- ρ_{i} prevalence
- α_{i} probability of receiving ART
- Mean number of people receiving ART is given by

$$
\alpha_{i} \cdot \rho_{i} \cdot N_{i}
$$

- Choice in which facility to attend

Motivating Example

- Choice in which facility to attend
- "Distance" to each facility

Facility	A	B	C	D
Time	19	18	21	43

Motivating Example

- Choice in which facility to attend
- "Distance" to each facility
- Probability of attending facility j from household i

$$
C_{j i} \propto \exp \left(-d_{j i}\right)
$$

Facility	A	B	C	D
Time	19	18	21	43
Probability	0.32	0.33	0.28	0.06

Motivating Example

- Distance is not the only factor influencing movement

Motivating Example

- Distance is not the only factor influencing movement
- Probability of attending facility j from household i

$$
C_{j i} \propto M_{j} \cdot \exp \left(-d_{j i}\right)
$$

Motivating Example

- Distance is not the only factor influencing movement
- Probability of attending facility j from household i

$$
C_{j i} \propto M_{j} \cdot \exp \left(-d_{j i}\right)
$$

Facility	A	B	C	D
Time	19	18	21	43
Probability	0.32	0.33	0.28	0.06
Probability	0.21	0.21	0.18	0.40

Motivating Example

- Distance is not the only factor influencing movement
- Probability of attending facility j from household i

$$
C_{j i} \propto M_{j} \cdot \exp \left(-d_{j i}\right)
$$

- The number of people in household i attending facility j for ART with favourability

$$
C_{j i} \cdot \alpha_{i} \cdot \rho_{i} \cdot N_{i}
$$

Sum across households to obtain the	Facility	A	B	C	D	
number of patients attending facility.	Time	Probability	0.32	18	21	0.33
	0.28	43				
	Probability	0.21	0.21	0.18	0.40	

Modelling ART Coverage

- Estimate ART coverage using

$$
\hat{Y}_{i}^{A R T} \sim \operatorname{Bin}\left(\rho_{i} \cdot N_{i}, \alpha_{i}\right)
$$

- People move from moving to facility j from region i with probability $C_{j i}$
- Therefore we are observing

$$
Y_{j}^{A R T}=\sum_{i} C_{j i} \hat{Y}_{i}^{A R T}
$$

- How do we fit this in practice?
- Sum of a binomial is not a binomial
- How do we get the $C_{j i}$ (catchments)?

Modelling ART Coverage

- ART coverage in region i modelled as

$$
\hat{Y}_{i}^{A R T} \sim \operatorname{Poisson}\left(\rho_{i} \cdot N_{i} \cdot \alpha_{i}\right)
$$

- People move from region j to facility i with probability $C_{j i}$

$$
\begin{aligned}
& Y_{j}^{A R T}=\sum_{i} C_{j i} \hat{Y}_{i}^{A R T} \\
& Y_{j}^{A R T} \sim \operatorname{Poisson}\left(\sum_{i} C_{j i} \cdot \rho_{i} \cdot N_{i} \cdot \alpha_{i}\right)
\end{aligned}
$$

Example: Malawi

Figure: (Left) Map of Traditional Authorities in South-eastern Malawi, (Center) Map of Facilities administering ART South-eastern Malawi and (Right) Travel time to nearest facility, by grid cell ($1 \mathrm{~km} \cdot 1 \mathrm{~km}$ resolution).

- Prevalence
- HIVE
- Population-based HIV impact assessment survey (PHIA)
- Demographic and household surveys (DHS)
- Antenatal care facilities (ANC)
- Population
- worldpop
- Age and sex categorised
- Anti-retroviral therapy (ART)
- Travel times

Figure: (Left) Locations of facilities administering ART. (Right) Estimates of population, by grid cell $(1 \mathrm{~km} \cdot 1 \mathrm{~km}$ resolution).

Modelling ART Coverage

$$
Y_{j}^{A R T} \sim \operatorname{Poisson}\left(\sum_{i} C_{j i} \cdot \rho_{i} \cdot N_{i} \cdot \alpha_{i}\right)
$$

- Population of region i - Fixed, obtained from worldpop

Modelling ART Coverage

$$
Y_{j}^{A R T} \sim \operatorname{Poisson}\left(\sum_{i} C_{j i} \cdot \rho_{i} \cdot N_{i} \cdot \alpha_{i}\right)
$$

- Population of region i - Fixed, obtained from worldpop
- Prevalence of region i - Fixed, obtained from HIVE

Modelling ART Coverage

$$
Y_{j}^{A R T} \sim \operatorname{Poisson}\left(\sum_{i} C_{j i} \cdot \rho_{i} \cdot N_{i} \cdot \alpha_{i}\right)
$$

- Population of region i - Fixed, obtained from worldpop
- Prevalence of region i - Fixed, obtained from HIVE
- ART coverage of region i -

$$
\operatorname{logit}\left(\alpha_{i}\right) \sim N\left(0.7,0.3^{2}\right)
$$

Modelling ART Coverage

$$
Y_{j}^{A R T} \sim \operatorname{Poisson}\left(\sum_{i} C_{j i} \cdot \rho_{i} \cdot N_{i} \cdot \alpha_{i}\right)
$$

- Catchment probabilities from region i to facility i -

$$
C_{j i} \propto M_{j} \cdot \kappa\left(d_{j i}\right)
$$

Modelling ART Coverage

$$
Y_{j}^{A R T} \sim \operatorname{Poisson}\left(\sum_{i} C_{j i} \cdot \rho_{i} \cdot N_{i} \cdot \alpha_{i}\right)
$$

- Catchment probabilities from region i to facility i -

$$
C_{j i} \propto M_{j} \cdot \kappa\left(d_{j i}\right)
$$

- $d_{j i}$ average distance from region j to facility i

Modelling ART Coverage

$$
Y_{j}^{A R T} \sim \operatorname{Poisson}\left(\sum_{i} C_{j i} \cdot \rho_{i} \cdot N_{i} \cdot \alpha_{i}\right)
$$

- Catchment probabilities from region i to facility i -

$$
C_{j i} \propto M_{j} \cdot \kappa\left(d_{j i}\right)
$$

- $d_{j i}$ average distance from region j to facility i
- Kernel controlling the

$$
\kappa(x)=\exp (-x)
$$

Modelling ART Coverage

$$
Y_{j}^{A R T} \sim \operatorname{Poisson}\left(\sum_{i} C_{j i} \cdot \rho_{i} \cdot N_{i} \cdot \alpha_{i}\right)
$$

- Catchment probabilities from region i to facility i -

$$
C_{j i} \propto M_{j} \cdot \kappa\left(d_{j i}\right)
$$

- $d_{j i}$ average distance from region j to facility i
- Kernel controlling the

$$
\kappa(x)=\exp (-x)
$$

- 'Favourability' factor

$$
\log \left(M_{j}\right)=\beta_{0 j}+\sum_{k} \beta_{k} X_{j k}
$$

Results

Figure: Estimated ART coverage under different scales of the kernels.

Results

Figure: Probability of attending Bangwe Health Centre in Blantyre under different scales of the kernels.

Results

Figure: Estimated ART coverage with altered prior on the ART coverage.

Summary and Future Work

- Produced a model that estimates
- ART coverage
- Probabilistic catchments
- Future work
- Incorporate other sources of data?
- Other types of catchment?

Any Questions？

