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INTRODUCTION

◮ Accurate estimates of socio-economic well-being are vital to set policies and address inequality.
◮ Reduce poverty or improve public health.
◮ Target deprived areas.

◮ Significant advancements in census data collection, challenges remain to produce reliable
estimates of poverty in developing countries.

◮ DHS Program conduct nationally representative surveys in over 90 countries around the world.
◮ DHS surveys collect data on a wide range of monitoring and impact evaluation indicators in

the areas of wealth.
◮ These questions can be extracted and used to study national and sub-national socio-economic

status.



INTRODUCTION

◮ Yeh et. al (2020) used 43 DHS surveys across to construct a wealth index between 2009 and 2016
in 23 countries across sub-Saharan Africa.

◮ Combined with satellite images, used deep learning methods to predict socio-economic status
in three year bands (2009-2011, 2012-2014, 2015-2017).

Table: Summary of wealth related questions used in Yeh et al. (2020). Questions are categorised into asset variables and non-asset
variables.

Asset variables Non-asset variables
Has electricity Has motorcycle/scooter Water quality
Has television Has car/truck Toilet quality

Has radio Has mobile telephone Floor quality
Has refrigerator Number of bedrooms per person
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PRINCIPLE COMPONENT ANALYSIS

◮ Yeh et al. (2020) and other studies have used Principal Component Analysis (PCA) to construct
a household level wealth index.

◮ PCA is a method of dimensionality reduction and it has many uses (Image compression,
Financial modelling etc.)

◮ The aim of dimensionality reduction is to reduce the dimensionality of a data set to produce a
more manageable reduced data set.

◮ Useful when attempting to analyse a large data set, with a significantly large number of
variables.



PRINCIPLE COMPONENT ANALYSIS

◮ This new reduced data set should retain as much information in the original data set as possible
and remove any redundant information.

◮ PCA is a linear dimensionality reduction technique

yi = a1xi,1 + a2xi,2 + . . .+ anxi,n

◮ The elements aj are summation weights that we apply to data to
◮ The simplest case for choosing a1 = 1 and a2 = . . . = aj = 0

y = a1x1

◮ This would not be a great choice because it will not contain much information about the
original data set.

◮ There needs to be a criterion placed on the choice of aj such that we retain as much information
about the original input data x.



DATA

◮ Survey data was obtained from the 2016 DHS survey in South Africa with fieldwork conducted
between June and November 2016.

◮ The survey contains responses to questions regarding the household’s assets, such as electricity,
a refrigerator, a car and other items.

◮ Variables were categorised into asset variables (such as household has a washing machine, or a
refrigerator), and non-asset variables (such as the source of drinking water).

Table: Summary of wealth related questions. Questions are categorised into asset variables and non-asset variables.

Asset variables Non-asset variables
Has electricity Has mobile telephone Source of drinking water
Has television Has car/truck Type of toilet facility

Has radio Has watch Main floor material
Has refrigerator Has animal drawn cart Number of household members

Has motorcycle/scooter Has boat with a motor Number of rooms used for sleeping
Has a computer Owns livestock Type of cooking fuel

Electricity connected to the mains Has microwave oven Share toilet with other household
Vacuum cleaner or floor polisher Has bicycle

Has electric/gas stove Has washing machine
Has telephone (landline)



DATA

◮ The extracted asset variables had binary responses with ”yes” recoded as 1 and ”no” recoded as
0.

◮ Following Yeh et al. (2020), Responses to:
◮ ”Source of drinking water”
◮ ”Main floor material”
◮ ”Type of toilet facility”

were recoded between 1-5, with 5 representing the highest quality and 1 being the lowest
quality

◮ Responses to Type of cooking fuel were recoded, with non-polluting fuel recoded as 1 and
polluting fuel recoded as 0 (according to the WHO definition of polluting fuels).

◮ An number of rooms per person was also calculated, by combining the variable number of
rooms used for sleeping and number of people per household.

◮ Households with missing responses were removed, leaving a total of 11083 households in our
data set to estimate an asset index.



PCA ANALYSIS
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Figure: Weights from the first principal component from wealth index using method (i).



DATA

◮ To test the robustness of a wealth index we compare multiple configurations.
(i) Wealth index (Assets and non-assets)

(ii) Wealth index (Assets only)
(iii) Wealth index using variables from Yeh et al. (2020)
(iv) Sum of assets owned

◮ We perform a PCA for (i)-(iii) and extract the first principle component as the wealth indexes
above and sum the number of assets owned (see Table 2) for (iv).

◮ Performed on the household level, and also aggregated to the cluster level.



PCA ANALYSIS
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Figure: Comparison of the wealth indexes (described above) (a) method (ii) vs. (i), (b) method (iii) vs. (i), and (c) method (iv) vs.
(i). Red line denotes the y=x, and blue line denotes the results of fitting linear regression to the scores combination. Associated
R2 from each linear regression shown in the top left corner of each plot.
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Figure: Comparison of the weights from the principal components analysis from Yeh et al. (2020) and the South Africa analysis



WEALTH INDEX
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Figure: (a) Estimated wealth index at the cluster level for South Africa. Colours denote the scale of the wealth index and (b) Map
of South African provinces.



WEALTH INDEX
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Figure: Maps of the estimated wealth index at the cluster level for (a) Cape Town and (b) Johannesburg. Colours denote the scale
of the wealth index.



SUMMARY

◮ Created a wealth index, which describes the relative wealth of regions in South Africa.
◮ Wealth index was robust to the variables included and it was shown that those with more assets

had a higher wealth index.
◮ Generally lowest scores lived outside of the populated cities such as Cape Town and

Johannesburg.
◮ However, we also found that there was considerable variation, even within the previously

identified wealthier cities.
◮ Only used survey data, where we have estimated wealth at a relatively small number of points

and cannot give us a complete picture of socio-economic status across South Africa.
◮ Next stage is to use (Bayesian) deep learning models, modelled from night-time lights data and

multi-spectral imagery.
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